社交媒體中情感傳播關(guān)鍵問題研究
[Abstract]:With the development of Web2.0, users can upload text, images, audio, video, and so on through social media to share their status or content of interest. The user's forwarding behavior makes the information spread at an index level, which is much higher than the propagation speed of the traditional media, so the social media has gradually replaced the traditional news media as an important channel for the public to obtain information. The most basic of the social media is the text message, which contains not only the substantive content, but also the user's evaluation of things or events, and the evaluation of the user's feelings. The emotion is spread with the text information through the user's forwarding behavior. According to the emotional infection theory of psychology, the emotion is very easy to be infected with each other among the users, which causes a wide range of attention and discussion among the public. This article mainly focuses on the deep analysis and study of the four aspects of the emotional communication in the social media. A user influence ranking algorithm based on emotional consistency is proposed to find the opinion leader. The algorithm mainly studies the influence of the emotion and the original emotion in the forwarding process. The concept of the emotion-consistent value is used to indicate the degree of the user's consistency with the original micro-emotion in the forwarding process, and the concept of the emotion-consistent weight is proposed to indicate the degree of the relationship between the two users in the forwarding process. according to the characteristics of the user, the user can be divided into three categories: leaf nodes, users of the leaf nodes and the remaining nodes. the influence of the leaf node is 0; the influence of the user with the degree of the leaf node is mainly from the emotion consistent value of the degree user; and the influence of the residual node is from the influence of the degree user and the emotion consistent value of the degree user. The validity of the model is verified through the sina microbo data set. An independent cascade model based on the change of emotion is proposed to solve the problem of maximizing the influence of the positive society. The model of maximizing the influence of social influence is based on the experimental results of the information transmission model, and the process of interpreting the influence based on the information transmission model based on the change of emotion is put forward. The information dissemination process is as follows: At the initial stage of the information dissemination, the user never knows the information to hold forward or negative feelings at a certain probability. Then, as more and more users in the network participate in the forwarding of information, the user interacts with each other, that is, the user decides whether to change the initial emotion with a certain probability. the positive influence is calculated when the user no longer has a user changing the emotion. The information dissemination model verifies the validity of the model through the real social media data. The independent cascade model based on the change of emotion is applied to three real networks to calculate the positive influence. By contrast with the existing algorithm, the independent cascade model based on the change of emotion can get the maximum positive influence. An emotion prediction model based on emotional consistency is proposed to improve the accuracy of the prediction target emotion. The model puts forward the concept of mass emotion to express the emotion of the general public in the comments, and puts forward the concept of the public sentiment consistency to show the degree of the user's agreement with the general public. The user can be divided into three categories based on the public emotional consistency: the independent user, the approval user and the initial user. The independent user represents a user with a small influence with the general public, that is, a user with a small general feeling consistency value, and a user who agrees with the general public feeling, that is, a user with a large emotional consistency value; the initial user indicates that there is no history of history to analyze the user associated with the general sentiment. The emotion prediction algorithm based on the emotion consistency combines the emotion of the public, the personal emotion, the friend emotion and the quasi-friend emotion to predict the target emotion. For different types of users, different emotion combinations are used for emotional prediction. The results show that the model is better than the existing model. Two emotion-based information transmission models are proposed to study the transmission process of different emotions in social networks: an emotional-based epidemic model and an emotion-based independent cascade model. The difference between the two models is whether the emotion changes in the process of emotional communication. In the model of the infectious disease based on emotion, it is assumed that the emotion does not change in the course of the transmission, and the model proposes that the weight based on the emotion indicates the forwarding strength between the user and the user for some kind of emotion. The emotion-based independent cascade model assumes that the emotion changes in the course of propagation. The model divides the emotion propagation into three parts: first, the concept of the forward probability is proposed to study whether the information containing the emotion is forwarded; secondly, whether the emotion is changed after the emotion is forwarded by using the machine learning algorithm; and thirdly, The concept of transformation weight is proposed to study the emotion if it changes after being forwarded. The results show that the performance of the independent cascade model based on emotion is better.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:G206;TP393.09
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;社交媒體十大趨勢[J];現(xiàn)代營銷(經(jīng)營版);2009年05期
2 ;怎樣看待社交媒體[J];中國經(jīng)濟和信息化;2011年12期
3 馬爾科姆;;被高估的社交媒體[J];當(dāng)代傳播;2011年03期
4 ;未來社交媒體10大趨勢[J];中國傳媒科技;2011年07期
5 啟程;;社交媒體之“濕”與社會之痛[J];檢察風(fēng)云;2011年17期
6 曹博林;;社交媒體:概念、發(fā)展歷程、特征與未來——兼談當(dāng)下對社交媒體認(rèn)識的模糊之處[J];湖南廣播電視大學(xué)學(xué)報;2011年03期
7 ;國外媒體對記者使用社交媒體的規(guī)定[J];新聞記者;2011年12期
8 馬小娟;;論社交媒體對公民政治參與的影響[J];中國出版;2011年24期
9 馮巖;;人文城市發(fā)展中的社交媒體管理[J];城市發(fā)展研究;2012年03期
10 文衛(wèi)華;劉嘉麗;王雅萱;;試析社交媒體在新聞傳播中的運用與邊界[J];中國報業(yè);2012年08期
相關(guān)會議論文 前3條
1 袁靖華;;微博的理想與現(xiàn)實——兼論社交媒體建構(gòu)公共空間的三大困擾因素[A];數(shù)字未來與媒介社會2[C];2010年
2 洪婧茹;;社交媒體與上海大學(xué)生的環(huán)保參與:從線上關(guān)注到線下行動[A];中華新聞傳播學(xué)術(shù)聯(lián)盟第六屆研究生學(xué)術(shù)研討會論文集[C];2014年
3 王斌;鄭滿寧;;扭轉(zhuǎn)“逆差”:社交媒體時代國人形象傳播機制及策略[A];新聞學(xué)論集(第30輯)[C];2014年
相關(guān)重要報紙文章 前10條
1 韓軍 編譯;社交媒體營銷助推器還是新航向?[N];中國民航報;2010年
2 本報記者 陳曉平;社交媒體重構(gòu)商業(yè)?[N];21世紀(jì)經(jīng)濟報道;2011年
3 一鳴;出版商介入社交媒體的危險[N];中國圖書商報;2011年
4 Chris Nerney;社交媒體帶來的5大安全威脅[N];網(wǎng)絡(luò)世界;2011年
5 李鑫源;社交媒體影響不容小窺[N];科技日報;2011年
6 陳曉平;社交媒體的“葫蘆論”[N];21世紀(jì)經(jīng)濟報道;2011年
7 肖明超(新生代市場監(jiān)測機構(gòu)副總經(jīng)理);社交媒體引發(fā)營銷裂變[N];中國圖書商報;2011年
8 文化學(xué)者 常江;社交媒體的“情緒化”[N];新華每日電訊;2012年
9 朱永磊 貝恩大中華區(qū)電信、媒體與高科技業(yè)務(wù)主管;如何成為社交媒體的長期贏家[N];通信產(chǎn)業(yè)報;2012年
10 記者 趙中文;東南亞企業(yè)傾向利用社交媒體經(jīng)商[N];中華工商時報;2012年
相關(guān)博士學(xué)位論文 前10條
1 王琦瑤;社交媒體中情感傳播關(guān)鍵問題研究[D];北京郵電大學(xué);2016年
2 張雪;復(fù)雜網(wǎng)絡(luò)鏈路分析與社交媒體預(yù)測[D];國防科學(xué)技術(shù)大學(xué);2013年
3 羅準(zhǔn)辰;社交媒體中的信息檢索與傳播分析[D];國防科學(xué)技術(shù)大學(xué);2013年
4 丹尼爾;社交媒體在企業(yè)傳播中的使用:可口可樂中國和可口可樂加納案例研究[D];復(fù)旦大學(xué);2014年
5 朱星瑋;社交媒體信息結(jié)構(gòu)化組織及其應(yīng)用研究[D];清華大學(xué);2015年
6 謝松縣;社交媒體中觀點信息分析與應(yīng)用[D];國防科學(xué)技術(shù)大學(xué);2014年
7 陳夏雨;工作場所中企業(yè)社交媒體可供性的實證研究[D];中國科學(xué)技術(shù)大學(xué);2017年
8 張偉;基于地點的社交媒體中用戶建模與內(nèi)容推薦[D];清華大學(xué);2016年
9 唐李洋;基于社交媒體大數(shù)據(jù)的Twitter營銷策略研究[D];合肥工業(yè)大學(xué);2015年
10 董偉;挖掘和分析文本來識別公司財務(wù)欺詐:針對財務(wù)報表和社交媒體的分析[D];中國科學(xué)技術(shù)大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 李雪絮;社交媒體廣告的表現(xiàn)策略研究[D];浙江理工大學(xué);2013年
2 呂蒙;網(wǎng)絡(luò)社交媒體關(guān)系網(wǎng)絡(luò)與品牌傳播[D];遼寧大學(xué);2013年
3 吳祖宏;大學(xué)生手機社交媒體依賴的問卷編制及特點研究[D];西南大學(xué);2014年
4 張茜茹;大學(xué)生社交媒體依賴的測量及其與主觀幸福感的關(guān)系[D];山西師范大學(xué);2015年
5 徐蕾;政務(wù)社交媒體用戶使用意愿研究[D];南京大學(xué);2015年
6 鞏麗;社交媒體對電視節(jié)目受眾觀看行為的影響研究[D];復(fù)旦大學(xué);2014年
7 鄒姝玉;社交媒體自我表達(dá)研究[D];四川師范大學(xué);2015年
8 秦晶晶;大學(xué)生社交媒體的使用情況、社會支持與社交焦慮的關(guān)系及其情緒啟動效應(yīng)研究[D];閩南師范大學(xué);2015年
9 蔣勝;基于社交媒體網(wǎng)絡(luò)的消費者網(wǎng)購決策及商品推薦研究[D];安徽工程大學(xué);2015年
10 任雁;“文化遷徙”背景下中國留學(xué)社交媒體使用的“兩棲”性研究[D];山東大學(xué);2015年
,本文編號:2380262
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2380262.html