基于Spark-streaming的DDoS攻擊實(shí)時(shí)監(jiān)測(cè)方法的研究
[Abstract]:With the vigorous development of big data technology, the current big data technology is also widely used. Big data safety analysis has also become a hot topic. However, DDoS attack has been one of the main threats to network security since it was born. Although there are many experts and scholars dedicated to maintaining network security, a lot of fruitful work has been done to detect and defend against DDoS attacks. However, with the development of cloud computing and other emerging technologies, DDo S attacks are increasingly threatening the Internet. In order to detect DDoS attacks against TCP protocol quickly and accurately. In this paper, from the view of big data processing, a large data stream processing platform based on Spark-streaming flow computing framework is proposed to detect DDoS attacks with naive Bayesian classification algorithm. After consulting a large number of related data of DDoS attacks, this paper firstly analyzes the principle of DDoS attacks and the main methods of DDoS attacks, and then summarizes the previous research from two aspects: detection and defense. The method of analyzing the header information of data packet by using naive Bayes classification algorithm is analyzed. Then, introduce the scheme of using big data platform to deal with DDoS attack. This scheme will analyze and detect DDoS attacks from three layers, namely, data collection layer, collation layer and processing layer. In the collection layer, the accessed server uses the tcpdump command of the Li nux system to capture the TCP packet. The Flume framework sends the captured TCP packet to the Kafka framework of the collation layer. The Kafka framework of the finishing layer caches the TCP data packets sent by several Flume frameworks, and compiles and packages the procedures containing the naive Bayes classification algorithm, and submits them to the Spark cluster for processing in batches. Finally, this paper compares the SYN-Flooding,Landing attack and RST reset attack against TCP protocol. It is verified that the system has high real-time and accuracy.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP393.08;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 江原;;揮之不去的夢(mèng)魘——DDoS攻擊[J];信息安全與通信保密;2013年10期
2 湯昒昊;;從“棱鏡門”事件看美國(guó)的情報(bào)監(jiān)督機(jī)制[J];情報(bào)雜志;2013年09期
3 張永錚;肖軍;云曉春;王風(fēng)宇;;DDoS攻擊檢測(cè)和控制方法[J];軟件學(xué)報(bào);2012年08期
4 王左利;魏亮;;揭秘5·19斷網(wǎng)風(fēng)暴[J];中國(guó)教育網(wǎng)絡(luò);2009年07期
5 孫紅杰;方濱興;張宏莉;;基于鏈路特征的DDoS攻擊檢測(cè)方法[J];通信學(xué)報(bào);2007年02期
6 羅華;胡光岷;姚興苗;;基于網(wǎng)絡(luò)全局流量異常特征的DDoS攻擊檢測(cè)[J];計(jì)算機(jī)應(yīng)用;2007年02期
7 趙福祥,王育民,趙紅云;一種用于移動(dòng)代理的安全方法研究[J];信息安全與通信保密;2001年02期
相關(guān)碩士學(xué)位論文 前3條
1 陳勇;Linux平臺(tái)下應(yīng)對(duì)DDoS攻擊檢測(cè)過濾技術(shù)研究[D];南京郵電大學(xué);2015年
2 胥秋華;DDoS攻擊防御關(guān)鍵技術(shù)的研究[D];上海交通大學(xué);2007年
3 沈清;基于linux內(nèi)核的防SYN Flood系統(tǒng)分析與研究[D];浙江大學(xué);2006年
,本文編號(hào):2376568
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2376568.html