改進極限學(xué)習(xí)機的網(wǎng)絡(luò)流量混沌預(yù)測
發(fā)布時間:2018-12-07 12:42
【摘要】:為了獲得更加精確的網(wǎng)絡(luò)流量預(yù)測,降低網(wǎng)絡(luò)擁塞的頻率,提出了改進極限學(xué)習(xí)機的網(wǎng)絡(luò)流量預(yù)測模型。針對網(wǎng)絡(luò)流量混沌性分別確定原始網(wǎng)絡(luò)流量的延遲時間和嵌入維數(shù),采用極限學(xué)習(xí)機對網(wǎng)絡(luò)流量的變化特點進行擬合,改進標準學(xué)習(xí)機,改善學(xué)習(xí)速度和預(yù)測性能,最后通過網(wǎng)絡(luò)流量數(shù)據(jù)的預(yù)測實驗驗證其可行性。驗證結(jié)果表明:與其它網(wǎng)絡(luò)流量預(yù)測模型相比,改進極限學(xué)習(xí)的網(wǎng)絡(luò)流量預(yù)測結(jié)果更加可靠,對網(wǎng)絡(luò)流量將來變化趨勢可以更加準確描述,提高了網(wǎng)絡(luò)流量預(yù)測精度。
[Abstract]:In order to obtain more accurate network traffic prediction and reduce the frequency of network congestion, an improved extreme learning machine network traffic prediction model is proposed. According to the chaos of network traffic, the delay time and embedding dimension of original network traffic are determined, and the characteristics of network traffic change are fitted by extreme learning machine, and the standard learning machine is improved, and the learning speed and prediction performance are improved. Finally, the feasibility of network traffic data prediction is verified by experiments. The results show that compared with other network traffic prediction models, the improved limit learning network traffic prediction results are more reliable, can more accurately describe the future trend of network traffic changes, and improve the accuracy of network traffic prediction.
【作者單位】: 周口職業(yè)技術(shù)學(xué)院信息工程學(xué)院;河南應(yīng)用技術(shù)職業(yè)學(xué)院信息工程學(xué)院;周口師范學(xué)院計算機科學(xué)與技術(shù)學(xué)院;
【基金】:國家自然科學(xué)基金(U1504613) 河南省高?萍紕(chuàng)新團隊計劃(17IRTSTHN009)
【分類號】:TP181;TP393.06
[Abstract]:In order to obtain more accurate network traffic prediction and reduce the frequency of network congestion, an improved extreme learning machine network traffic prediction model is proposed. According to the chaos of network traffic, the delay time and embedding dimension of original network traffic are determined, and the characteristics of network traffic change are fitted by extreme learning machine, and the standard learning machine is improved, and the learning speed and prediction performance are improved. Finally, the feasibility of network traffic data prediction is verified by experiments. The results show that compared with other network traffic prediction models, the improved limit learning network traffic prediction results are more reliable, can more accurately describe the future trend of network traffic changes, and improve the accuracy of network traffic prediction.
【作者單位】: 周口職業(yè)技術(shù)學(xué)院信息工程學(xué)院;河南應(yīng)用技術(shù)職業(yè)學(xué)院信息工程學(xué)院;周口師范學(xué)院計算機科學(xué)與技術(shù)學(xué)院;
【基金】:國家自然科學(xué)基金(U1504613) 河南省高?萍紕(chuàng)新團隊計劃(17IRTSTHN009)
【分類號】:TP181;TP393.06
【相似文獻】
相關(guān)期刊論文 前10條
1 陳振偉;王茜;黃繼紅;;基于多神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量預(yù)測模型[J];計算機安全;2010年12期
2 于靜;王輝;;基于組合模型的網(wǎng)絡(luò)流量預(yù)測[J];計算機工程與應(yīng)用;2013年08期
3 葉苗;王勇;;基于支持向量回歸學(xué)習(xí)機的網(wǎng)絡(luò)流量預(yù)測[J];桂林工學(xué)院學(xué)報;2007年02期
4 張正本;翟海慶;;基于組合模型的網(wǎng)絡(luò)流量預(yù)測[J];河南機電高等專科學(xué)校學(xué)報;2008年06期
5 周丹琪;喬國平;張泉方;;基于K-Factor GARMA模型的網(wǎng)絡(luò)流量預(yù)測[J];江南大學(xué)學(xué)報(自然科學(xué)版);2008年02期
6 姜明;吳春明;張e,
本文編號:2367225
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2367225.html
最近更新
教材專著