云計算環(huán)境下作業(yè)調(diào)度策略研究
[Abstract]:Cloud computing, as a new computing model, provides dynamic on-demand services to users, which has attracted the attention of scholars and companies. Job scheduling is one of the key technologies of cloud computing. It is of great significance to meet the needs of users and improve the quality of service and economic benefits of cloud service providers. However, the research of job scheduling at home and abroad is not enough, some of the research only from the perspective of users, some from the point of view of cloud service providers, the optimization goal is single; some from the perspective of both but not comprehensive considerations. At the same time, access control is the strategy of cloud computing data center whether to receive the incoming job request or not. As an effective mechanism to avoid cloud computing resource overload, there are few researches at present. In order to solve the above problems, this paper studies the job scheduling strategy in cloud computing. The main work is as follows: 1. From the point of view of users and cloud service providers, a job scheduling algorithm based on improved ant colony algorithm in cloud computing environment is proposed to minimize the total cost. The algorithm not only achieves this goal, but also takes into account the user's QoS (QoS), such as job completion time and cost, and takes into account the load balancing of virtual machine resources in cloud computing. 2. A job scheduling strategy based on access control is proposed for the situation that the number of job requests is large the deadline is tight and the data center resources are insufficient in the cloud computing environment. The main goal of this strategy is to maximize the profit of cloud service providers by increasing the number of job requests received, that is, the throughput of job requests. At the same time, the strategy uses the penalty mechanism of utility calculation, preemption strategy based on priority, and extensibility of data center resources. The internal usage of CloudSim is used to modify its source code for programming. The job scheduling algorithm based on improved ant colony algorithm and the job scheduling strategy based on access control are proposed in this paper. The simulation experiments are carried out on this platform. Firstly, the job scheduling algorithm based on improved ant colony algorithm and the job scheduling algorithm based on basic ant colony algorithm are compared, and then the job scheduling algorithm based on access control is compared and verified. The results of the former show that the total cost of the proposed algorithm is relatively low, and the job completion time and cost are slightly lower, and the resource load balancing degree is improved when considering the resource load balancing in the data center. The latter verifies the effectiveness of the penalty mechanism and the preemption strategy, that is, increasing the throughput of job requests and increasing the profit of cloud service providers.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TP393.09
【相似文獻】
相關(guān)期刊論文 前10條
1 惠永濤;;作業(yè)調(diào)度的原理及算法[J];計算機研究與發(fā)展;1989年03期
2 陳曦,柳林;基于仿真方法的流通加工作業(yè)調(diào)度研究[J];信息技術(shù);2001年11期
3 潘全科,羅翔,朱劍英;基于準時制的時間成本雙目標作業(yè)調(diào)度優(yōu)化[J];東南大學學報(自然科學版);2003年01期
4 劉繁茂;陳新;;中小型半流程制造業(yè)的生產(chǎn)作業(yè)調(diào)度系統(tǒng)研究與應用[J];制造技術(shù)與機床;2006年09期
5 顏斯泰;熊萌立;趙淑光;曾志華;;高性能計算與作業(yè)調(diào)度技術(shù)在核電工程領(lǐng)域的應用[J];互聯(lián)網(wǎng)天地;2013年10期
6 蔡龍飛;;田間作業(yè)調(diào)度的優(yōu)化研究與應用[J];現(xiàn)代計算機(專業(yè)版);2009年02期
7 劉新闖;邱洪澤;魏二有;蘇兆鋒;;利用優(yōu)勢元素改進進化算法求解柔性作業(yè)調(diào)度[J];計算機工程與應用;2010年17期
8 梁迪;陶澤;;多目標柔性作業(yè)調(diào)度的優(yōu)化研究[J];計算機工程與應用;2009年15期
9 胡中華;趙敏;;一種求解機器人作業(yè)調(diào)度的智能優(yōu)化算法[J];電焊機;2009年11期
10 蘇開根;毋國慶;石曉紅;;785計算機操作系統(tǒng)作業(yè)調(diào)度策略[J];計算機工程與科學;1981年01期
相關(guān)會議論文 前3條
1 裴爾明;Karim Bernardet;于傳松;孫功星;;基于Agent技術(shù)“推拉”結(jié)合的網(wǎng)格作業(yè)調(diào)度系統(tǒng)[A];第十四屆全國核電子學與核探測技術(shù)學術(shù)年會論文集(2)[C];2008年
2 劉禮;楊裔;火久元;劉海迪;李振芳;李廉;;數(shù)學網(wǎng)絡集成環(huán)境作業(yè)調(diào)度系統(tǒng)模型[A];2006年全國理論計算機科學學術(shù)年會論文集[C];2006年
3 裴爾明;Karim Bernardet;于傳松;孫功星;;基于Agent技術(shù)“推拉”結(jié)合的網(wǎng)格作業(yè)調(diào)度系統(tǒng)[A];第十四屆全國核電子學與核探測技術(shù)學術(shù)年會論文集(下冊)[C];2008年
相關(guān)重要報紙文章 前1條
1 陳超;有效作業(yè)調(diào)度實現(xiàn)高效生產(chǎn)[N];中國計算機報;2004年
相關(guān)博士學位論文 前5條
1 鄒敢;柔性搬運系統(tǒng)的智能作業(yè)調(diào)度方法研究[D];昆明理工大學;2014年
2 顧學民;分布式制造環(huán)境下的作業(yè)調(diào)度研究[D];西北工業(yè)大學;2006年
3 梁毅;面向網(wǎng)絡計算的作業(yè)調(diào)度系統(tǒng)關(guān)鍵技術(shù)研究[D];中國科學院研究生院(計算技術(shù)研究所);2005年
4 顧濤;集群MapReduce環(huán)境中任務和作業(yè)調(diào)度若干關(guān)鍵問題的研究[D];南開大學;2014年
5 高昊江;板料加工車間物流智能控制及倉儲管理系統(tǒng)研究[D];華中科技大學;2007年
相關(guān)碩士學位論文 前10條
1 干一宏;面向航天制造企業(yè)的車間作業(yè)調(diào)度與指導技術(shù)研究[D];南京理工大學;2015年
2 代應祥;基于Hadoop的作業(yè)調(diào)度策略研究[D];電子科技大學;2015年
3 周凱;高性能計算中作業(yè)調(diào)度技術(shù)與集群管理系統(tǒng)的研究[D];江蘇科技大學;2015年
4 侯明霞;云計算環(huán)境下作業(yè)調(diào)度策略研究[D];電子科技大學;2014年
5 羅惠星;基于批量作業(yè)調(diào)度的算法研究[D];上海師范大學;2015年
6 林薇;多目標多約束環(huán)境下的生產(chǎn)計劃與作業(yè)調(diào)度方法研究[D];東華大學;2008年
7 徐磊;云環(huán)境下資源管理與作業(yè)調(diào)度關(guān)鍵問題研究及應用[D];清華大學;2014年
8 薛帆;結(jié)合組織模型的多Agent分布式調(diào)度研究[D];中國民航大學;2007年
9 葛新;基于云計算集群擴展中的調(diào)度問題研究[D];中國科學技術(shù)大學;2011年
10 黃游檳;面向c-MES的資源重構(gòu)與作業(yè)調(diào)度優(yōu)化技術(shù)研究[D];南京航空航天大學;2006年
,本文編號:2341676
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2341676.html