基于MapReduce的僵尸網(wǎng)絡在線檢測算法
發(fā)布時間:2018-11-15 14:52
【摘要】:目前僵尸網(wǎng)絡主要是通過網(wǎng)絡流量分析的方法來進行檢測,這往往依賴于僵尸主機的惡意行為,或者需要外部系統(tǒng)提供信息。另外傳統(tǒng)的流量分析方法計算量很大,難以滿足實時要求。為此該文提出一種基于MapReduce的僵尸網(wǎng)絡在線檢測算法,該算法通過分析網(wǎng)絡流量并提取其內(nèi)在的關聯(lián)關系檢測僵尸網(wǎng)絡,并在云計算平臺上進行數(shù)據(jù)分析,使數(shù)據(jù)獲取和數(shù)據(jù)分析工作同步進行,實現(xiàn)在線檢測。實驗結(jié)果表明該算法的檢測率可達到90%以上,誤報率在5%以下,并且數(shù)據(jù)量較大時加速比接近線性,驗證了云計算技術在僵尸網(wǎng)絡檢測方面的可行性。
[Abstract]:At present botnets are mainly detected by network traffic analysis which often depends on the malicious behavior of zombie hosts or requires information from external systems. In addition, the traditional flow analysis method is difficult to meet the real-time requirements. In this paper, a botnet online detection algorithm based on MapReduce is proposed. The algorithm detects botnet by analyzing network traffic and extracting its inherent correlation relationship, and analyzes the data on cloud computing platform. Data acquisition and data analysis are synchronized to achieve online detection. The experimental results show that the detection rate of the algorithm can reach more than 90%, the false alarm rate is less than 5%, and the acceleration ratio is close to linear when the data is large, which verifies the feasibility of cloud computing technology in botnet detection.
【作者單位】: 南開大學信息技術科學學院;天津城市建設大學計算機與信息工程學院;
【基金】:天津市重點項目(11jczdjc28100) 國家科技支撐計劃(2012BAF12B00)資助課題
【分類號】:TP393.08
[Abstract]:At present botnets are mainly detected by network traffic analysis which often depends on the malicious behavior of zombie hosts or requires information from external systems. In addition, the traditional flow analysis method is difficult to meet the real-time requirements. In this paper, a botnet online detection algorithm based on MapReduce is proposed. The algorithm detects botnet by analyzing network traffic and extracting its inherent correlation relationship, and analyzes the data on cloud computing platform. Data acquisition and data analysis are synchronized to achieve online detection. The experimental results show that the detection rate of the algorithm can reach more than 90%, the false alarm rate is less than 5%, and the acceleration ratio is close to linear when the data is large, which verifies the feasibility of cloud computing technology in botnet detection.
【作者單位】: 南開大學信息技術科學學院;天津城市建設大學計算機與信息工程學院;
【基金】:天津市重點項目(11jczdjc28100) 國家科技支撐計劃(2012BAF12B00)資助課題
【分類號】:TP393.08
【參考文獻】
相關期刊論文 前2條
1 方濱興;崔翔;王威;;僵尸網(wǎng)絡綜述[J];計算機研究與發(fā)展;2011年08期
2 江健;諸葛建偉;段海新;吳建平;;僵尸網(wǎng)絡機理與防御技術[J];軟件學報;2012年01期
【共引文獻】
相關期刊論文 前10條
1 許力文;喬麗娟;李壯;;P2P僵尸網(wǎng)絡安全機制研究[J];計算機安全;2013年01期
2 陳向東;李靜蕾;;僵尸網(wǎng)絡攻擊原理及檢測技術研究[J];濟南職業(yè)學院學報;2012年01期
3 馮麗萍;韓琦;王鴻斌;康蘇明;;P2P僵尸網(wǎng)絡的有效免疫措施[J];計算機應用;2012年09期
4 馮麗萍;韓琦;王鴻斌;;具有變化感染率的僵尸網(wǎng)絡傳播模型[J];計算機科學;2012年11期
5 李躍;翟立東;王宏霞;時金橋;;一種基于社交網(wǎng)絡的移動僵尸網(wǎng)絡研究[J];計算機研究與發(fā)展;2012年S2期
6 李世淙;云曉春;張永錚;;一種基于分層聚類方法的木馬通信行為檢測模型[J];計算機研究與發(fā)展;2012年S2期
7 歐陽賠;蘇璞睿;和亮;;僵尸網(wǎng)絡仿真系統(tǒng)設計與實現(xiàn)[J];計算機應用與軟件;2013年01期
8 吳e,
本文編號:2333613
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2333613.html
最近更新
教材專著