基于Spark云平臺的變壓器故障并行診斷與分析
[Abstract]:With the rapid development of smart grid, the power industry has entered the "big data era." Transformer is the key equipment of power network running smoothly. Transformer fault diagnosis method can ensure the smooth operation of power system. In power system, transformer on-line monitoring technology can be used to find fault types in time. However, because of the large number of monitoring points and the acquisition of monitoring data many times in a period of time, the data volume increases rapidly. By parallelizing the data mining algorithm, the fast analysis of massive power transformer monitoring data is realized. Spark is a distributed memory computing framework, which has the advantages of lightweight and fast processing, compatible with Hadoop ecosystem, low learning cost and active community support. It supports many language programming interfaces and provides a new research idea for parallel analysis of massive transformer monitoring data. This paper introduces common types of transformer faults, introduces traditional and intelligent fault diagnosis methods in detail, analyzes the advantages and disadvantages of different methods, and proposes a parallel diagnosis and analysis scheme for power transformers based on Spark cloud platform. The naive Bayes method in Spark machine learning database is selected as the fault classification method of power transformer, and the DGA monitoring data is used as input to complete the parallel fault classification experiment. The experimental results show that the parallel classification method based on Spark is superior to the classification method in single machine environment. In addition, based on the research of fuzzy clustering algorithm, using distributed matrix and broadcast variable mechanism, the parallel fuzzy clustering algorithm Spark-FCM, is implemented on Spark platform to extend the Spark machine learning algorithm library. The algorithm is applied to transformer fault clustering, and the experimental results show that the method is feasible.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP393.09;TM41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉成;牛銳;范賀明;許靜;朱永利;;基于Spark環(huán)境變壓器故障并行診斷[J];電力科學(xué)與工程;2016年06期
2 王桂蘭;周國亮;薩初日拉;朱永利;;Spark環(huán)境下的并行模糊C均值聚類算法[J];計(jì)算機(jī)應(yīng)用;2016年02期
3 孟建良;劉德超;;一種基于Spark和聚類分析的辨識電力系統(tǒng)不良數(shù)據(jù)新方法[J];電力系統(tǒng)保護(hù)與控制;2016年03期
4 薛浩然;張珂珩;李斌;彭晨輝;;基于布谷鳥算法和支持向量機(jī)的變壓器故障診斷[J];電力系統(tǒng)保護(hù)與控制;2015年08期
5 王德文;孫志偉;;電力用戶側(cè)大數(shù)據(jù)分析與并行負(fù)荷預(yù)測[J];中國電機(jī)工程學(xué)報;2015年03期
6 吳凱峰;劉萬濤;李彥虎;蘇伊鵬;肖政;裴旭斌;虎嵩林;;基于云計(jì)算的電力大數(shù)據(jù)分析技術(shù)與應(yīng)用[J];中國電力;2015年02期
7 宋亞奇;周國亮;朱永利;李莉;王劉旺;王德文;;云平臺下輸變電設(shè)備狀態(tài)監(jiān)測大數(shù)據(jù)存儲優(yōu)化與并行處理[J];中國電機(jī)工程學(xué)報;2015年02期
8 鄭含博;王偉;李曉綱;王立楠;李予全;韓金華;;基于多分類最小二乘支持向量機(jī)和改進(jìn)粒子群優(yōu)化算法的電力變壓器故障診斷方法[J];高電壓技術(shù);2014年11期
9 禹建麗;卞帥;;基于BP神經(jīng)網(wǎng)絡(luò)的變壓器故障診斷模型[J];系統(tǒng)仿真學(xué)報;2014年06期
10 張靜;聶章龍;;基于主動學(xué)習(xí)的動態(tài)模糊聚類算法[J];計(jì)算機(jī)與現(xiàn)代化;2014年05期
相關(guān)博士學(xué)位論文 前2條
1 尹金良;基于相關(guān)向量機(jī)的油浸式電力變壓器故障診斷方法研究[D];華北電力大學(xué);2013年
2 鄭含博;電力變壓器狀態(tài)評估及故障診斷方法研究[D];重慶大學(xué);2012年
相關(guān)碩士學(xué)位論文 前3條
1 楊有嬋;基于改進(jìn)PGSA-BP神經(jīng)網(wǎng)絡(luò)的電力變壓器故障綜合診斷仿真研究[D];廣西大學(xué);2013年
2 南浩;基于改進(jìn)遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的變壓器故障診斷[D];華北電力大學(xué);2012年
3 周媛媛;基于DGA的變壓器故障診斷[D];長沙理工大學(xué);2010年
,本文編號:2328563
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2328563.html