Snort規(guī)則分組和映射算法的研究
[Abstract]:With the rapid development of the Internet, the network security problem is becoming more and more serious. Intrusion detection technology is a new generation of active defense security technology after traditional security protection measures. Snort is an intrusion detection system based on rule matching. Firstly, Snort analyzes and extracts the characteristics of each intrusion behavior, and then writes these features into rules according to certain specifications to form a Snort rule database. Finally, the intrusion detection process is completed by matching the network packets with the rules in the rule database. In Snort system, the efficiency of rule matching is the key to the performance of Snort. The research shows that the rule matching efficiency can be improved by preprocessing the rules in Snort rule database. According to the preprocessing process of Snort rules, this paper studies how to transform Snort rules into non-deterministic finite state machines, how to group and merge state machines, and how to map state machines into hash tables. On the basis of this, we propose a method of constructing non-deterministic finite state machine based on pcre library to deal with some special syntax of pcre option which is widely used in Snort rules; (2) A state machine grouping algorithm is designed, which is combined according to the characteristics of the state machine to reduce the number of state machines, so as to indirectly reduce the number of state machines that need accurate matching, and further improve the efficiency of rule matching. 3 A low collision rate hashing mapping algorithm is designed. This algorithm can locate the state machine with some characteristics quickly, and at the same time, it can ensure that the hash table has as low a collision rate as possible. Experimental results show that the algorithm is effective.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TP393.08
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 賈慶節(jié);;論防范黑客入侵的策略[J];電腦知識(shí)與技術(shù)(學(xué)術(shù)交流);2007年15期
2 路志平;田喜平;;計(jì)算機(jī)病毒的危害及防范[J];電腦知識(shí)與技術(shù);2010年09期
3 耿風(fēng);郭紅山;;Snort檢測(cè)引擎的優(yōu)化研究[J];電腦知識(shí)與技術(shù);2010年36期
4 楊軍;鄧芳林;;基于Snort入侵檢測(cè)系統(tǒng)模式匹配改進(jìn)算法研究[J];計(jì)算機(jī)安全;2011年06期
5 趙忠鑫;;試論我國(guó)網(wǎng)絡(luò)信息安全的現(xiàn)狀與對(duì)策[J];計(jì)算機(jī)光盤(pán)軟件與應(yīng)用;2012年03期
6 張悅連,郭文東;Snort規(guī)則及規(guī)則處理模塊分析[J];河北科技大學(xué)學(xué)報(bào);2003年04期
7 汪海慧;;淺議網(wǎng)絡(luò)安全問(wèn)題及防范對(duì)策[J];信息技術(shù);2007年01期
8 劉寶旭,徐菁,許榕生;黑客入侵防護(hù)體系研究與設(shè)計(jì)[J];計(jì)算機(jī)工程與應(yīng)用;2001年08期
9 唐謙,張大方;入侵檢測(cè)中模式匹配算法的性能分析[J];計(jì)算機(jī)工程與應(yīng)用;2005年17期
10 袁世忠;曹e
本文編號(hào):2300435
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2300435.html