基于混沌神經(jīng)網(wǎng)絡(luò)的QoS組播路由研究
[Abstract]:Multicast refers to the information transmission mode (, QoS (Quality of Sevice) from one information source point to multiple target nodes called quality of Service (QoS). It is a network security mechanism used to solve the problems of network delay and congestion. It refers to the ability of the network to provide higher priority services. With the emergence of new network services, multicast technology with quality of service (QoS) assurance has become a research hotspot. QoS multicast routing problem, also known as Steiner tree problem, has been proved to be a complete NP problem to minimize the cost of multicast tree. It is very important to select suitable QoS multicast routing algorithm for high quality multicast communication. Chaotic neural network is an effective method to solve this kind of problem. In the past, chaotic neural networks used to solve QoS multicast routing problems focused on improving the performance of the neural network structure, but neglected the improvement of the energy function, and could not strictly constrain the "row" column of the output matrix. In this paper, two new constraints are added to the traditional energy function, and a new energy function is constructed to ensure the validity of the closed path. The improved energy function and the transient chaotic neural network are combined to solve the QoS multicast routing problem. Simulation results show that the improved algorithm can effectively improve the probability and speed of convergence to the optimal solution, and it is also suitable for multicast networks with different complexity. Noise chaotic neural network is obtained by adding exponentially attenuated noise term on the basis of transient chaotic neural network. It has the property of stochastic simulated annealing. In this paper, the improved energy function and the noisy chaotic neural network are combined to solve the QoS multicast routing problem. The simulation results show that the noise chaotic neural network can increase the efficient and optimal solution rates, but the improvement effect of random noise is different for different reasons. At the same time, the initial noise amplitude and the simulated annealing speed of noise must be controlled within a proper range, otherwise the optimization effect will be reduced. The hysteresis noise chaotic neural network can show both stochastic chaotic simulated annealing and hysteresis dynamics, which can help the neural network to jump out of the local extremum. The chaotic neural network based on noise regulation factor can control the random noise level. In this paper, the hysteretic noise chaotic neural network, the hysteretic noise chaotic neural network based on noise regulation factor and the improved energy function are applied to the QoS multicast routing problem. The simulation results show that the optimization results of chaotic neural networks with inverse hysteretic noise are better than those with noisy chaotic neural networks under high noise conditions, but under low noise conditions, the chaotic neural networks with time-delay noise should be used to improve the optimization results. The hysteretic noise chaotic neural network based on noise regulation factor has stronger hysteresis dynamics, regardless of the level of noise. By controlling the noise regulation factor, the optimization results are better than those of hysteretic noise chaotic neural network and noise chaotic neural network.
【學(xué)位授予單位】:齊齊哈爾大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP183;TP393.03
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王征應(yīng),石冰心;基于啟發(fā)式遺傳算法的QoS組播路由問題求解[J];計算機(jī)學(xué)報;2001年01期
2 顧軍華,侯向丹,宋潔,李琳;基于螞蟻算法的QoS組播路由問題求解[J];河北工業(yè)大學(xué)學(xué)報;2002年04期
3 楊文忠;張振宇;吳向前;;認(rèn)知無線電網(wǎng)絡(luò)中QoS組播路由調(diào)度[J];計算機(jī)工程與科學(xué);2012年10期
4 李美蓮;郭李艷;;用混合遺傳算法求解QoS組播路由選擇方法[J];桂林航天工業(yè)高等專科學(xué)校學(xué)報;2007年03期
5 孫玲玲;賈智平;陳亞南;盧昕;;求解QoS組播路由問題的改進(jìn)遺傳算法[J];計算機(jī)工程與應(yīng)用;2008年06期
6 王軍;;遺傳算法在QoS組播路由計算方面的應(yīng)用[J];數(shù)字通信世界;2007年12期
7 古明家;宣士斌;廉侃超;李永勝;;求解QoS組播路由的自適應(yīng)變異二次蟻群算法[J];計算機(jī)工程與應(yīng)用;2010年13期
8 宋乃斌;高隨祥;;解決多約束QoS組播路由問題的遺傳算法[J];計算機(jī)工程;2006年24期
9 張慧檔;呂娜;賀昱曜;徐浩翔;;基于混沌神經(jīng)網(wǎng)絡(luò)的QoS組播路由算法[J];空軍工程大學(xué)學(xué)報(自然科學(xué)版);2008年01期
10 趙秀平;譚冠政;;基于免疫遺傳算法的多約束QoS組播路由選擇方法[J];計算機(jī)應(yīng)用;2008年03期
相關(guān)會議論文 前1條
1 王德毓;甘金穎;王德志;;基于改進(jìn)遺傳算法的多約束QoS組播路由算法[A];2006通信理論與技術(shù)新進(jìn)展——第十一屆全國青年通信學(xué)術(shù)會議論文集[C];2006年
相關(guān)博士學(xué)位論文 前1條
1 謝黎明;認(rèn)知無線電網(wǎng)絡(luò)中QoS組播路由與因果序群組通信的研究[D];武漢大學(xué);2011年
相關(guān)碩士學(xué)位論文 前3條
1 張慶亮;基于混沌神經(jīng)網(wǎng)絡(luò)的QoS組播路由研究[D];齊齊哈爾大學(xué);2016年
2 程遙;基于移動代理的QoS組播路由研究[D];上海交通大學(xué);2007年
3 張宗飛;量子進(jìn)化算法及其在QoS組播路由和網(wǎng)絡(luò)入侵檢測中的應(yīng)用[D];浙江工業(yè)大學(xué);2009年
,本文編號:2296482
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2296482.html