天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

位置感知的協(xié)同過(guò)濾式Web服務(wù)推薦方法研究

發(fā)布時(shí)間:2018-10-24 06:34
【摘要】:隨著Web服務(wù)數(shù)量的迅速增長(zhǎng),面對(duì)海量的Web服務(wù),構(gòu)建高效的Web服務(wù)推薦系統(tǒng)很有必要。為了向用戶(hù)推薦高質(zhì)量的服務(wù),關(guān)鍵問(wèn)題是如何獲得Web服務(wù)的Qo S值。盡管用戶(hù)可以通過(guò)親自調(diào)用Web服務(wù)來(lái)評(píng)估它的Qo S,但是由于服務(wù)的用戶(hù)并不是評(píng)價(jià)服務(wù)的專(zhuān)家,要在短時(shí)間對(duì)大量候選服務(wù)的Qo S進(jìn)行準(zhǔn)確評(píng)估是不太現(xiàn)實(shí)的?紤]到Web服務(wù)的Qo S值是與具體用戶(hù)相關(guān)的,近年來(lái)不少工作利用協(xié)同過(guò)濾推薦技術(shù)來(lái)進(jìn)行個(gè)性化的Qo S預(yù)測(cè)和服務(wù)推薦,取得了一定的成效。然而,傳統(tǒng)的協(xié)同過(guò)濾技術(shù)在應(yīng)用時(shí)受數(shù)據(jù)稀疏性的影響較大,且存在冷啟動(dòng)以及可擴(kuò)展性差等問(wèn)題。此外,考慮到網(wǎng)絡(luò)延遲和網(wǎng)絡(luò)條件,同一個(gè)地區(qū)的用戶(hù)有較大可能在相同Web服務(wù)上觀察到相似的響應(yīng)時(shí)間。針對(duì)以往基于協(xié)同過(guò)濾的Web服務(wù)推薦方法的不足,本文提出了一種新的Web服務(wù)Qo S預(yù)測(cè)及推薦方法。本文的主要貢獻(xiàn)如下:(1)提出了一種基于位置聚類(lèi)的協(xié)同式Web服務(wù)推薦方法,該方法首先利用服務(wù)Qo S與用戶(hù)位置的相關(guān)性,將用戶(hù)根據(jù)自治系統(tǒng)(國(guó)家)進(jìn)行聚類(lèi),并根據(jù)聚類(lèi)結(jié)果對(duì)空缺Qo S值進(jìn)行填充;然后再對(duì)空缺Qo S值預(yù)先進(jìn)行填充和計(jì)算活動(dòng)用戶(hù)與各個(gè)用戶(hù)相似度的基礎(chǔ)上,利用To P-K算法,求得最相似來(lái)為活動(dòng)用戶(hù)預(yù)測(cè)未知服務(wù)的Qo S值,完成推薦。我們的方法能夠有效解決Web服務(wù)數(shù)據(jù)稀疏性問(wèn)題和冷啟動(dòng)問(wèn)題,同時(shí),在精度和覆蓋率之間獲得一個(gè)更好的平衡。為了更好的驗(yàn)證我們所提出的方法的準(zhǔn)確性,我們將該方法在真實(shí)的Web服務(wù)數(shù)據(jù)集上進(jìn)行了一系列全面的實(shí)驗(yàn),結(jié)果顯示了所提方法的優(yōu)越性。(2)提出了一種基于因子分解機(jī)的質(zhì)量感知Web服務(wù)推薦方法,本文利用Web服務(wù)的特點(diǎn),將用戶(hù)和服務(wù)的網(wǎng)絡(luò)位置信息和因子分解機(jī)相結(jié)合,提出了一種位置感知的因子分解機(jī)模型及相應(yīng)的Web服務(wù)推薦方法。該方法根據(jù)位置信息確定用戶(hù)和服務(wù)的相似鄰居集合,然后顯式地利用相似用戶(hù)和相似服務(wù)信息改進(jìn)因子分解機(jī)模型,以準(zhǔn)確預(yù)測(cè)未知Web服務(wù)的質(zhì)量和推薦高質(zhì)量的Web服務(wù)。該方法使用了在真實(shí)數(shù)據(jù)集上的實(shí)驗(yàn)表明該算法在預(yù)測(cè)精度上優(yōu)于其它協(xié)同過(guò)濾式推薦算法。同時(shí)該算法具有較高的運(yùn)行效率,預(yù)測(cè)服務(wù)質(zhì)量的時(shí)間復(fù)雜度與數(shù)據(jù)規(guī)模的大小呈線性相關(guān),可以較好地解決大規(guī)模推薦系統(tǒng)的數(shù)據(jù)稀疏性與可擴(kuò)展性問(wèn)題。
[Abstract]:With the rapid growth of Web services, it is necessary to build an efficient Web services recommendation system in the face of massive Web services. In order to recommend high quality service to users, the key problem is how to get the Qo S value of Web service. Although the user can evaluate the Web service by calling it himself, it is not realistic to evaluate the Qo S of a large number of candidate services in a short time because the user of the service is not an expert in evaluating the service. Considering that the Qo S value of Web services is related to specific users, in recent years, a lot of work has made use of collaborative filtering recommendation technology to carry out personalized Qo S prediction and service recommendation, and achieved certain results. However, the traditional collaborative filtering technology is greatly affected by data sparsity in application, and there are some problems such as cold start and poor scalability. In addition, considering network latency and network conditions, users in the same area are more likely to observe similar response times on the same Web service. In view of the shortcomings of the previous Web service recommendation methods based on collaborative filtering, a new Web service Qo S prediction and recommendation method is proposed in this paper. The main contributions of this paper are as follows: (1) A collaborative Web service recommendation method based on location clustering is proposed. Firstly, by using the correlation between service Qo S and user location, users are clustered according to autonomous system (state). According to the clustering result, the vacant Qo S value is filled, and then the vacant Qo S value is filled in beforehand and the similarity between the active user and each user is calculated, then the To P-K algorithm is used. Obtain the most similar to predict the unknown service Qo S value for the active user, complete the recommendation. Our method can effectively solve the problem of Web service data sparsity and cold start, and achieve a better balance between precision and coverage. In order to better verify the accuracy of the proposed method, we conducted a series of comprehensive experiments on the real Web services data set. The results show the superiority of the proposed method. (2) A quality-aware Web service recommendation method based on factorizer is proposed. This paper combines the network location information of user and service with the factoring machine by using the characteristics of Web service. This paper presents a location-aware factoring machine model and a corresponding Web service recommendation method. This method determines the set of similar neighbors of users and services according to location information, and then explicitly uses similar users and similar service information to improve the factoring machine model to accurately predict the quality of unknown Web services and recommend high-quality Web services. Experiments on real data sets show that the proposed algorithm is superior to other collaborative filtering recommendation algorithms in prediction accuracy. At the same time, the algorithm has high running efficiency, and the time complexity of prediction quality of service is linearly related to the size of data, which can solve the problem of data sparsity and scalability in large-scale recommendation systems.
【學(xué)位授予單位】:湖南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP391.3;TP393.09

【參考文獻(xiàn)】

相關(guān)期刊論文 前6條

1 胡亞慧;李石君;余偉;楊莎;方其慶;;一種結(jié)合文化和因子分解機(jī)的快速評(píng)分預(yù)測(cè)方法[J];南京大學(xué)學(xué)報(bào)(自然科學(xué));2015年04期

2 唐明董;姜葉春;劉建勛;;用戶(hù)位置感知的Web服務(wù)QoS預(yù)測(cè)方法[J];小型微型計(jì)算機(jī)系統(tǒng);2012年12期

3 劉建國(guó);周濤;郭強(qiáng);汪秉宏;;個(gè)性化推薦系統(tǒng)評(píng)價(jià)方法綜述[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2009年03期

4 邵凌霜;周立;趙俊峰;謝冰;梅宏;;一種Web Service的服務(wù)質(zhì)量預(yù)測(cè)方法[J];軟件學(xué)報(bào);2009年08期

5 劉書(shū)雷;劉云翔;張帆;唐桂芬;景寧;;一種服務(wù)聚合中QoS全局最優(yōu)服務(wù)動(dòng)態(tài)選擇算法[J];軟件學(xué)報(bào);2007年03期

6 廖祝華;劉建勛;劉毅志;劉潔;;Web服務(wù)發(fā)現(xiàn)技術(shù)研究綜述[J];情報(bào)學(xué)報(bào);2008年02期

相關(guān)碩士學(xué)位論文 前2條

1 戴小玲;基于隨機(jī)游走的Web服務(wù)推薦算法研究[D];湖南科技大學(xué);2016年

2 余秋宏;基于因子分解機(jī)的社交網(wǎng)絡(luò)關(guān)系推薦研究[D];北京郵電大學(xué);2013年



本文編號(hào):2290599

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2290599.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)e6953***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com