面向微博用戶的內(nèi)容與好友推薦算法研究與實現(xiàn)
[Abstract]:With the increase of network information, the phenomenon of information overload is becoming more and more serious. Aiming at the problem of information overload and low recommendation accuracy in Weibo platform, this paper uses social network, singular value decomposition, text classification and other techniques to improve the recommended effect of Weibo. Three recommendation algorithms are proposed and introduced, and three recommendation algorithms are studied in depth. The main contents of this paper are as follows: (1) the recommendation algorithm based on social network is studied, and on this basis, Weibo friend recommendation algorithm based on social network and trust degree is proposed. Aiming at the problem of low recommendation accuracy in social networks, this algorithm proposes a method to predict user preferences by combining user concern and user behavior. And on this basis to make friends recommendation for users. (2) in order to solve the problem that Weibo has no scoring data, this paper uses the method of converting user behavior to scoring to predict user preference. A friend recommendation algorithm of Weibo based on singular value decomposition (SVD) is proposed. The algorithm reduces the dimension of the generated user score matrix by singular value decomposition. And combined with user similarity and text similarity to predict and recommend preferences. (3) because Weibo contains a large number of texts, and user preferences are not unique, Therefore, this paper proposes Weibo content recommendation algorithm based on text classification. Based on the text mining of a large amount of text information in Weibo platform, the algorithm arranges the user's preference by text classification, and recommends the content for the user by classifying, so as to improve the accuracy and recall rate of recommendation. Finally, the experimental results show that the accuracy and recall rate of the three recommended algorithms have been improved to a certain extent.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP393.092;TP391.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡錫衡;;正向最大匹配法在中文分詞技術(shù)中的應(yīng)用[J];鞍山師范學(xué)院學(xué)報;2008年02期
2 張耀輝;;CSDN“拖庫”事件后對密碼保護(hù)的反思[J];長沙通信職業(yè)技術(shù)學(xué)院學(xué)報;2012年02期
3 邵樂;于紅;劉溪婧;綦孝姬;梁曉娜;;基于樸素貝葉斯的漁業(yè)文本分類器研究[J];大連水產(chǎn)學(xué)院學(xué)報;2010年01期
4 鄭志嫻;;微博個性化內(nèi)容推薦算法研究[J];電腦開發(fā)與應(yīng)用;2012年12期
5 何明;胡彩霞;;一種文本相似性的度量方法和計算方法[J];黃山學(xué)院學(xué)報;2005年06期
6 李改;李磊;;基于矩陣分解的協(xié)同過濾算法[J];計算機(jī)工程與應(yīng)用;2011年30期
7 李忠俊;周啟海;帥青紅;;一種基于內(nèi)容和協(xié)同過濾同構(gòu)化整合的推薦系統(tǒng)模型[J];計算機(jī)科學(xué);2009年12期
8 賀銀慧;陳端兵;陳勇;傅彥;;一種結(jié)合共同鄰居和用戶評分信息的相似度算法[J];計算機(jī)科學(xué);2010年09期
9 董元元;陳基漓;唐小俠;;基于潛在狄利克雷分配模型和互信息的無監(jiān)督特征選取法[J];計算機(jī)應(yīng)用;2012年08期
10 李勁;張華;吳浩雄;向軍;;基于特定領(lǐng)域的中文微博熱點話題挖掘系統(tǒng)BTopicMiner[J];計算機(jī)應(yīng)用;2012年08期
,本文編號:2278175
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2278175.html