基于中文微博的產(chǎn)品評(píng)價(jià)分類(lèi)及推薦算法研究
[Abstract]:Weibo is a newly emerging network media communication platform in recent years. It has the characteristics of short content, fast communication speed, numerous users, etc. The emotional analysis of Weibo text is one of the hot spots of data mining in recent years, which has important significance and value. Users in the implementation of online shopping and other activities, they hope to obtain from Weibo concerned product evaluation information. In this paper, the text format of Chinese Weibo product evaluation information mining is not standard, the network language is used extensively, the composition is omitted and so on, and the marking data is scarce. The following research work has been carried out on the classification problems such as the difficulty of manual marking. According to the characteristics of Chinese Weibo, a method of constructing emotion evaluation unit is proposed. The method constructs the dictionary of emotion evaluation words, adverbs and evaluation objects, and formulates the corresponding component supplement and unit construction rules, which not only ensures the comprehensiveness and accuracy of extracting information, but also simplifies the word set. An attempt was made to improve efficiency. Experiments show that the proposed method is more accurate than the syntactic path-based correlation method. Aiming at the problem of Weibo text classification, this paper proposes a classification algorithm LP-SVM. based on graph semi-supervised learning. The algorithm combines tag diffusion process with support vector machine (SVM), which not only realizes the classification of a small number of labeled samples, but also avoids the problem of not producing classifiers in graph semi-supervised learning, so that the new data can only be retrained. Based on this algorithm, the feature extraction and semi-supervised classification of Weibo product emotion evaluation unit are carried out. Experimental results show that the proposed algorithm is superior to the traditional and direct push support vector machine (SVM) algorithms. Combined with practical application, a Weibo product recommendation algorithm based on evaluation and classification is proposed. Based on the results of product evaluation and classification and Weibo's text features, the proposed algorithm formulates the recommended product index and its calculation method. The experimental results of Weibo product recommendation are basically consistent with the results of user evaluation of related websites, which fully verify the accuracy of the algorithm.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TP393.092
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖建鵬;張來(lái)順;任星;;直推式支持向量機(jī)在Web信息抽取中的應(yīng)用研究[J];計(jì)算機(jī)工程與應(yīng)用;2009年02期
2 劉志明;劉魯;;基于機(jī)器學(xué)習(xí)的中文微博情感分類(lèi)實(shí)證研究[J];計(jì)算機(jī)工程與應(yīng)用;2012年01期
3 周立柱;賀宇凱;王建勇;;情感分析研究綜述[J];計(jì)算機(jī)應(yīng)用;2008年11期
4 楊經(jīng);林世平;;基于SVM的文本詞句情感分析[J];計(jì)算機(jī)應(yīng)用與軟件;2011年09期
5 朱嫣嵐;閔錦;周雅倩;黃萱菁;吳立德;;基于HowNet的詞匯語(yǔ)義傾向計(jì)算[J];中文信息學(xué)報(bào);2006年01期
6 章劍鋒;張奇;吳立德;黃萱菁;;中文觀點(diǎn)挖掘中的主觀性關(guān)系抽取[J];中文信息學(xué)報(bào);2008年02期
7 韓忠明;張玉沙;張慧;萬(wàn)月亮;黃今慧;;有效的中文微博短文本傾向性分類(lèi)算法[J];計(jì)算機(jī)應(yīng)用與軟件;2012年10期
8 王文遠(yuǎn);王大玲;馮時(shí);李任斐;王琳;;一種面向情感分析的微博表情情感詞典構(gòu)建及應(yīng)用[J];計(jì)算機(jī)與數(shù)字工程;2012年11期
9 周勝臣;瞿文婷;石英子;施詢(xún)之;孫韻辰;;中文微博情感分析研究綜述[J];計(jì)算機(jī)應(yīng)用與軟件;2013年03期
10 張珊;于留寶;胡長(zhǎng)軍;;基于表情圖片與情感詞的中文微博情感分析[J];計(jì)算機(jī)科學(xué);2012年S3期
,本文編號(hào):2275057
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2275057.html