鏈路預(yù)測和符號網(wǎng)絡(luò)社區(qū)檢測研究
[Abstract]:In recent years, with the rapid development of network information technology represented by the Internet, human society has entered a complex network era. In life, many complex systems can be abstracted into complex networks and then transformed into graphs for study. As an important property of network, community structure has been studied by more and more people in recent years. Understanding the community structure of the network not only helps to analyze the topology of the network, but also has important practical value. For example, we can find users who belong to the same community but have no connection in the social network, and recommend each other as friends. As one of the important bridges between complex network and information science, link prediction has attracted more and more attention. The related research of link prediction can not only promote the development of network science and information science, but also have great practical application value, such as guiding protein interaction experiment, online social recommendation and so on. However, most of the existing link prediction algorithms only consider the local information or path information of the network, while the community structure information of the network is rarely considered. In this paper, a dynamic link prediction algorithm considering the network community structure is proposed, which is applied to the link prediction of complex networks, and the structural information of signed networks is also studied. An improved community detection algorithm based on modularity is proposed. The main work of this paper is as follows: 1. In order to study the influence of the structural properties of complex networks on the results of link prediction, the relationship between clustering coefficients and link prediction of complex networks is mainly studied, and the experiments are carried out on different network models. The experimental results show that the link prediction results of complex networks increase with the increase of network clustering coefficients, and the BA network is easier to predict with the same clustering coefficient. On the basis of Kuramoto model, the continuous phase differential equation is changed into discrete phase differential equation, and a link prediction algorithm based on phase similarity is proposed. In a real social network, the phase similarity of two nodes with no edge in the same community is relatively large, while the similarity between two nodes with edge in different communities is relatively small. Therefore, the link prediction algorithm with pure phase similarity is still not ideal. In order to overcome this shortcoming, this paper combines the phase similarity with the common neighbor, that is, combining the community structure information of the network with the local information of the network. In this paper, a hybrid link prediction algorithm based on dynamics of network community structure is proposed, which is tested on real network and artificial network, and compared with existing link prediction algorithms. The method proposed in this paper is proved to be effective. A community detection algorithm based on symbolic network is proposed. Based on the modularity of existing symbolic networks and the properties of signed networks, a similarity function is defined for symbolic networks. According to the similarity function between nodes, the nodes that are most suitable for merging, that is, the nodes with the greatest similarity between each other, are found to merge. When judging whether the nodes can be merged and the termination conditions of the merging, the modularity of the existing signed network is adopted to determine whether the nodes can be merged or not. This paper defines a new condition to judge whether two nodes can be merged, and applies the proposed algorithm to real network and artificial generated network, and proves the effectiveness of the proposed algorithm.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:O157.5;TP393.09
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 劉國新;楊坤;;分布式創(chuàng)新網(wǎng)絡(luò)中的知識粘滯度探討——基于四維粘滯情境的視角[J];科學(xué)學(xué)研究;2012年09期
2 吳冰;王重鳴;唐寧玉;;軟件企業(yè)創(chuàng)業(yè)網(wǎng)絡(luò)對創(chuàng)新績效的影響機(jī)制研究[J];科學(xué)學(xué)研究;2007年S2期
3 黃彥彬;楊壽保;滕達(dá);赫衛(wèi)卿;王淑玲;;WiMAX Mesh網(wǎng)絡(luò)下具有QoS保障的動態(tài)握手方案[J];中國科學(xué)院研究生院學(xué)報;2012年03期
4 呂韓飛;王申康;;一種二層PE實(shí)現(xiàn)MPLS BGP VPN組網(wǎng)的方案[J];紹興文理學(xué)院學(xué)報(自然科學(xué)版);2004年03期
5 ;[J];;年期
相關(guān)會議論文 前6條
1 黃建玉;;淺談3G的網(wǎng)絡(luò)安全規(guī)劃[A];2007中國科協(xié)年會——通信與信息發(fā)展高層論壇論文集[C];2007年
2 葉作亮;高千惠;代麗;張夢;;回文網(wǎng)絡(luò)——探析Web信息的結(jié)構(gòu)和形成機(jī)制[A];第六屆(2011)中國管理學(xué)年會——信息管理分會場論文集[C];2011年
3 商宗雁;;光網(wǎng)絡(luò)發(fā)展展望[A];黑龍江省通信學(xué)會學(xué)術(shù)年會論文集[C];2005年
4 陳鋼;;MSTP技術(shù)在3G傳輸網(wǎng)絡(luò)建設(shè)中的重要意義及其發(fā)展趨勢[A];中國通信學(xué)會信息通信網(wǎng)絡(luò)技術(shù)委員會2005年年會論文集[C];2005年
5 陳文雄;;OTN技術(shù)在城域光網(wǎng)絡(luò)的應(yīng)用分析[A];第十屆中國科協(xié)年會信息化與社會發(fā)展學(xué)術(shù)討論會分會場論文集[C];2008年
6 馬潤斌;;IP網(wǎng)絡(luò)發(fā)展的基石——服務(wù)質(zhì)量(QoS)[A];中國通信學(xué)會信息通信網(wǎng)絡(luò)技術(shù)委員會2005年年會論文集[C];2005年
相關(guān)重要報紙文章 前10條
1 ;滲透網(wǎng)絡(luò)演繹安全神話[N];中國計(jì)算機(jī)報;2005年
2 王曉光;農(nóng)資營銷網(wǎng)絡(luò)建設(shè)思路[N];農(nóng)資導(dǎo)報;2005年
3 高國棟;堵住漏點(diǎn) 不留縫隙[N];中國計(jì)算機(jī)報;2003年
4 湖北大學(xué)網(wǎng)絡(luò)中心 李超;易于管理的網(wǎng)絡(luò)[N];計(jì)算機(jī)世界;2005年
5 ;透視世界第一部網(wǎng)絡(luò)戰(zhàn)爭法規(guī)[N];中國航天報;2011年
6 華為3Com 孫德和;業(yè)務(wù)融合網(wǎng)絡(luò)的魅力[N];中國電腦教育報;2005年
7 CPW記者 張戈;華為3Com“安全滲透網(wǎng)絡(luò)”突破傳統(tǒng)思路[N];電腦商報;2005年
8 孫保紅;3G UMTS網(wǎng)絡(luò)架構(gòu)建議[N];通信產(chǎn)業(yè)報;2002年
9 本報記者 楊 谷;王之認(rèn)為: 網(wǎng)絡(luò)和制造是中國IT業(yè)的機(jī)會[N];光明日報;2000年
10 花榮軍;高樓平地起[N];中華合作時報;2003年
相關(guān)博士學(xué)位論文 前8條
1 張蕊;網(wǎng)絡(luò)經(jīng)濟(jì)及其在中國的發(fā)展[D];四川大學(xué);2002年
2 禚釗;復(fù)雜網(wǎng)絡(luò)局域同步的實(shí)證、動力學(xué)和若干應(yīng)用問題研究[D];中國科學(xué)技術(shù)大學(xué);2012年
3 傅榮;商務(wù)網(wǎng)絡(luò)成因與演化——基于資源觀理論的分析[D];廈門大學(xué);2003年
4 熊巧;區(qū)域綜合交通網(wǎng)絡(luò)布局優(yōu)化與決策研究[D];西南交通大學(xué);2015年
5 陶洋;網(wǎng)絡(luò)性能提升技術(shù)研究[D];中國科學(xué)院研究生院(計(jì)算技術(shù)研究所);2001年
6 童俊杰;服務(wù)網(wǎng)絡(luò)中若干關(guān)鍵問題的研究[D];北京郵電大學(xué);2014年
7 柯文前;高速公路交通流網(wǎng)絡(luò)的時空特征與城市空間關(guān)聯(lián)研究[D];南京師范大學(xué);2015年
8 張瑩瑩;清開靈多組分干預(yù)腦缺血模型蛋白質(zhì)網(wǎng)絡(luò)主要模塊的識別與比較[D];中國中醫(yī)科學(xué)院;2014年
相關(guān)碩士學(xué)位論文 前10條
1 鞏慶良;鏈路預(yù)測和符號網(wǎng)絡(luò)社區(qū)檢測研究[D];西安電子科技大學(xué);2014年
2 丁濤;企業(yè)網(wǎng)絡(luò)的邊界效益分析[D];西北大學(xué);2007年
3 王峰;企業(yè)網(wǎng)絡(luò)的性能方案設(shè)計(jì)與優(yōu)化[D];湖北工業(yè)大學(xué);2011年
4 常峰;企業(yè)間網(wǎng)絡(luò)組織治理幅度研究[D];山西財(cái)經(jīng)大學(xué);2010年
5 張龍;基于動力學(xué)的符號網(wǎng)絡(luò)社區(qū)檢測[D];西安電子科技大學(xué);2014年
6 趙延樂;基于復(fù)雜網(wǎng)絡(luò)的鏈路預(yù)測研究[D];河北大學(xué);2014年
7 康釗寧;基于流行度和中心度的內(nèi)容網(wǎng)絡(luò)社區(qū)發(fā)現(xiàn)方法[D];北京交通大學(xué);2014年
8 王琳;新鄉(xiāng)下一代IP網(wǎng)絡(luò)的規(guī)劃與實(shí)施[D];北京郵電大學(xué);2008年
9 戶江民;復(fù)雜網(wǎng)絡(luò)環(huán)境下的分布式網(wǎng)絡(luò)拓?fù)涔芾砑败浖䦟?shí)現(xiàn)[D];電子科技大學(xué);2012年
10 武照東;基于Overlay網(wǎng)絡(luò)的多層網(wǎng)絡(luò)生存性研究[D];電子科技大學(xué);2009年
,本文編號:2254032
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2254032.html