基于多標記學習的用戶屬性流式預測模型研究與實現(xiàn)
[Abstract]:The Internet is transitioning from the era of Web1.0, where users are mainly to get information, to the era of Web2.0, where users are both network information acquirers and network information makers. In order to discover information or service in mass data, user portrait has great function and value. It can provide basic support and direction for personalized search, personalized recommendation, advertising marketing, product strategy and operation direction. User attribute prediction is the core work of user portrait research. Nowadays, the research of user attribute prediction mainly focuses on the construction of a single attribute prediction model, which lacks a more perfect and comprehensive model method for simultaneous prediction of multiple attributes. There is also a lack of data stream mining and conceptual drift processing mechanism in the corresponding fields, which can not realize the dynamic prediction of user attributes, and the existing research on concept drift has limitations, so it needs to be improved and strengthened accordingly. The purpose of this paper is to construct a user attribute flow prediction model with complete system, high efficiency and superior performance. In the aspect of attribute prediction, this paper focuses on the concept of simultaneous prediction of multiple attributes. Based on multi-label learning technology, this paper uses multi-example and multi-label framework (MIML) to study attribute prediction as a generalized multi-label classification. The concept of user object is innovatively constructed and the example is constructed by clustering method. The model can be constructed quickly and accurately and can predict multiple attributes at the same time. Different from the offline prediction model, this paper creatively adds an online flow framework based on data stream mining technology to deal with the online behavior and dynamics generated by users, and focuses on dealing with various conceptual drift problems of data flow. An adaptive concept drift classification algorithm based on prototype learning (Prototype-based) is proposed. Compared with the existing algorithm, SyncPrototype, has a significant improvement in classification performance, response speed and time performance of concept drift. It can deal with and adapt to the concept drift problem of data flow more effectively. It provides powerful support for user attribute flow incremental iteration, so as to realize user attribute dynamic prediction and flow iteration. In this paper, the user attribute flow prediction model based on multi-label learning is used to design and develop the data mining verification module of user attribute authentication system, which can effectively verify the authenticity of personal information filled by Weibo user and measure the reliability of attributes.
【學位授予單位】:北京郵電大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP393.0;TP311.13
【相似文獻】
相關(guān)期刊論文 前9條
1 吳飛;金士堯;胡浩民;;基于用戶屬性的個性化教學智能輔助研究和設(shè)計[J];計算機工程與科學;2012年09期
2 強磊;;3G通用用戶屬性及其參考結(jié)構(gòu)的研究[J];信息網(wǎng)絡(luò);2006年03期
3 葉春曉;符云清;鐘將;馮永;;基于屬性的委托撤銷研究[J];計算機科學;2008年03期
4 余坦;王益民;;一種基于用戶屬性的搜索算法[J];計算機系統(tǒng)應用;2010年07期
5 唐金鵬;李玲琳;楊路明;;面向用戶屬性的RBAC模型[J];計算機工程與設(shè)計;2010年10期
6 蔣凌志;;基于屬性的RBAC系統(tǒng)[J];計算機系統(tǒng)應用;2010年01期
7 葉春曉;符云清;吳中福;;基于角色限制條件的用戶-角色指派研究[J];計算機科學;2004年07期
8 ;“小弟弟”盯著你[J];每周電腦報;1997年33期
9 曹玖新;吳江林;石偉;劉波;鄭嘯;羅軍舟;;新浪微博網(wǎng)信息傳播分析與預測[J];計算機學報;2014年04期
相關(guān)重要報紙文章 前3條
1 馬志會;有線無線一體化不等于“統(tǒng)一品牌”[N];網(wǎng)絡(luò)世界;2009年
2 大竹剛;整合互聯(lián)網(wǎng)服務(wù)[N];中國計算機報;2002年
3 本報記者 別坤;王效轍:扁平化網(wǎng)絡(luò)更高效[N];計算機世界;2013年
相關(guān)博士學位論文 前1條
1 馮珍;產(chǎn)品級再使用研究[D];西安電子科技大學;2005年
相關(guān)碩士學位論文 前10條
1 蘇靜;基于多標記學習的用戶屬性流式預測模型研究與實現(xiàn)[D];北京郵電大學;2017年
2 景志珍;基于組合賦權(quán)的軟件服務(wù)評價方法的研究與實現(xiàn)[D];昆明理工大學;2015年
3 薛云霞;微博用戶屬性識別方法研究[D];蘇州大學;2015年
4 張曉;社會網(wǎng)絡(luò)上的用戶屬性推測方法研究[D];哈爾濱工業(yè)大學;2015年
5 秦Z諑,
本文編號:2252257
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2252257.html