基于RIPPER的網絡流量分類方法
發(fā)布時間:2018-09-17 20:33
【摘要】:利用一種規(guī)則學習方法中的重復增量式降低錯誤剪枝方法解決網絡流量分類問題。利用該方法能夠挖掘出網絡流屬性特征和類別之間的相關關系,并將挖掘出的關系構成分類器用于網絡流量分類。該方法能夠解決傳統(tǒng)機器學習方法在網絡流量中有大量的不平衡數(shù)據(jù)集時,分類錯誤率高等問題。實驗證明,該方法在網絡流量分類標準數(shù)據(jù)集上具有很高的分類準確率、查全率和查準率。
[Abstract]:The problem of network traffic classification is solved by reducing error pruning in a rule learning method. By using this method, the correlation between the attribute characteristics of network flow and the class can be mined, and the relationship constructed by this method can be applied to the classification of network traffic. This method can solve the problem of high classification error rate when the traditional machine learning method has a large number of unbalanced data sets in network traffic. Experiments show that this method has high classification accuracy recall and precision on the standard data set of network traffic classification.
【作者單位】: 哈爾濱理工大學計算機科學與技術學院;
【基金】:國家自然科學基金(60903083,61502123) 黑龍江省新世紀人才項目(1155-ncet-008) 黑龍江省博士后科研啟動基金
【分類號】:TP393.0
本文編號:2247011
[Abstract]:The problem of network traffic classification is solved by reducing error pruning in a rule learning method. By using this method, the correlation between the attribute characteristics of network flow and the class can be mined, and the relationship constructed by this method can be applied to the classification of network traffic. This method can solve the problem of high classification error rate when the traditional machine learning method has a large number of unbalanced data sets in network traffic. Experiments show that this method has high classification accuracy recall and precision on the standard data set of network traffic classification.
【作者單位】: 哈爾濱理工大學計算機科學與技術學院;
【基金】:國家自然科學基金(60903083,61502123) 黑龍江省新世紀人才項目(1155-ncet-008) 黑龍江省博士后科研啟動基金
【分類號】:TP393.0
【相似文獻】
相關期刊論文 前1條
1 冀汶莉;;基于RIPPER短序列匹配算法在入侵檢測中的優(yōu)化研究[J];蘭州工業(yè)高等?茖W校學報;2007年01期
相關碩士學位論文 前2條
1 張燦;基于規(guī)則的論壇爬取與抽取一體化[D];華東師范大學;2011年
2 吉偉鋒;基于汽車行業(yè)的Web信息抽取研究[D];遼寧工程技術大學;2007年
,本文編號:2247011
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2247011.html
最近更新
教材專著