基于大數(shù)據(jù)的Web入侵風險預測
發(fā)布時間:2018-09-04 09:58
【摘要】:為了提高網絡大數(shù)據(jù)的安全性能,進行Web入侵風險預測,提出基于非平穩(wěn)性盲源分離的大數(shù)據(jù)的Web入侵檢測模型進行風險預測估計。構建大數(shù)據(jù)的Web入侵信息測量模型,對Web大數(shù)據(jù)信息流進行二維信號擬合,采用非平穩(wěn)性高斯獨立平均統(tǒng)計量進行入侵信息判別,實現(xiàn)Web入侵風險預測模型改進設計。仿真結果表明,采用該方法進行大數(shù)據(jù)的Web入侵檢測的準確檢測概率較高,風險預測的精度高于傳統(tǒng)模型。
[Abstract]:In order to improve the security performance of big data network and predict the Web intrusion risk, a Web intrusion detection model based on non-stationary blind source separation was proposed to estimate the risk. This paper constructs big data's Web intrusion information measurement model, carries on the two-dimensional signal fitting to the Web big data information flow, discriminates the intrusion information by using the non-stationary Gao Si independent average statistic, realizes the improved design of the Web intrusion risk prediction model. The simulation results show that the accurate detection probability of big data's Web intrusion detection is higher and the precision of risk prediction is higher than that of traditional model.
【作者單位】: 廣州科技貿易職業(yè)學院;西南民族大學計算機科學與技術學院;
【基金】:國家自然科學基金(60702075) 廣東省高職高專云計算與大數(shù)據(jù)專業(yè)委員會教育科研課題(GDYJSKT14-04)
【分類號】:TP311.13;TP393.08
本文編號:2221749
[Abstract]:In order to improve the security performance of big data network and predict the Web intrusion risk, a Web intrusion detection model based on non-stationary blind source separation was proposed to estimate the risk. This paper constructs big data's Web intrusion information measurement model, carries on the two-dimensional signal fitting to the Web big data information flow, discriminates the intrusion information by using the non-stationary Gao Si independent average statistic, realizes the improved design of the Web intrusion risk prediction model. The simulation results show that the accurate detection probability of big data's Web intrusion detection is higher and the precision of risk prediction is higher than that of traditional model.
【作者單位】: 廣州科技貿易職業(yè)學院;西南民族大學計算機科學與技術學院;
【基金】:國家自然科學基金(60702075) 廣東省高職高專云計算與大數(shù)據(jù)專業(yè)委員會教育科研課題(GDYJSKT14-04)
【分類號】:TP311.13;TP393.08
【相似文獻】
相關期刊論文 前1條
1 李艷;吳介軍;寇曉東;韓志兵;;基于PCA-RBF網絡的高校保密項目風險預測[J];科技管理研究;2011年05期
相關碩士學位論文 前1條
1 王炫;基于GIS的危險化學品泄漏事故環(huán)境風險預測與評價信息支持系統(tǒng)研究[D];復旦大學;2009年
,本文編號:2221749
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2221749.html
最近更新
教材專著