一種基于邏輯回歸的微博用戶(hù)可信度評(píng)估方法
發(fā)布時(shí)間:2018-08-24 16:07
【摘要】:微博用戶(hù)的可信度研究已逐步成為當(dāng)前微博研究的熱點(diǎn)之一,其目的是對(duì)微博用戶(hù)的身份類(lèi)別進(jìn)行一個(gè)客觀、合理的評(píng)價(jià),有效鑒別微博中的虛假用戶(hù)。然而現(xiàn)有的鑒別方法大多停留在對(duì)傳統(tǒng)的虛假用戶(hù)“僵尸粉”進(jìn)行鑒別,其方法簡(jiǎn)單,功能單一,對(duì)新型智能虛假用戶(hù)的區(qū)分能力較弱,不能合理地對(duì)微博用戶(hù)的身份進(jìn)行評(píng)價(jià)。邏輯回歸是一種可以用來(lái)分類(lèi)的常用統(tǒng)計(jì)分析方法,可以得到概率型的預(yù)測(cè)結(jié)果,適用于對(duì)微博用戶(hù)的身份類(lèi)別進(jìn)行預(yù)測(cè)。本文針對(duì)現(xiàn)有鑒別方法的不足,首先對(duì)微博虛假用戶(hù)的行為特征進(jìn)行分析,從在線(xiàn)時(shí)長(zhǎng)、發(fā)帖時(shí)間、使用微博的動(dòng)力、微博來(lái)源以及互動(dòng)行為幾個(gè)方面,對(duì)微博用戶(hù)的固有特征進(jìn)行合理的邏輯組合,提取了用于區(qū)分用戶(hù)類(lèi)別的特征變量,而后運(yùn)用邏輯回歸算法,提出了一種基于邏輯回歸的微博用戶(hù)可信度評(píng)價(jià)模型WUREM。實(shí)驗(yàn)以新浪微博為研究平臺(tái),驗(yàn)證了模型的有效性和合理性。結(jié)果表明,本文所提模型可以根據(jù)用戶(hù)置信值CM的大小對(duì)其身份進(jìn)行一個(gè)較為客觀、合理的評(píng)價(jià)和分類(lèi),解決了傳統(tǒng)方法直接二分類(lèi)用戶(hù)類(lèi)別帶來(lái)的局限性和不合理性,不僅能對(duì)傳統(tǒng)的低級(jí)虛假用戶(hù)“僵尸粉”進(jìn)行識(shí)別,而且對(duì)新型智能虛假用戶(hù)也有較高的識(shí)別率。同時(shí),本文成果還可為微博用戶(hù)影響力、微博信息可信度、微博熱度等方面的研究提供必要參考。
[Abstract]:The research of Weibo user's credibility has gradually become one of the hotspots in the current research of Weibo. Its purpose is to evaluate the user's identity category objectively and reasonably, and to identify the false user effectively. However, most of the existing methods remain in the identification of the traditional false user "zombie powder". The method is simple, the function is single, and the ability to distinguish the new intelligent fake user is weak. Can't be reasonable to Weibo user's identity carries on the appraisal. Logical regression is a commonly used statistical analysis method which can be used to classify. It can obtain probabilistic prediction results and can be used to predict Weibo user's identity category. Aiming at the deficiency of the existing identification methods, this paper first analyzes the behavior characteristics of Weibo's false users, from the aspects of online time, posting time, the motive force of the use of Weibo, the origin of Weibo and the interactive behavior. The logical combination of the inherent characteristics of Weibo users is carried out, and the feature variables used to distinguish the user categories are extracted. Then, by using the logical regression algorithm, a user reliability evaluation model WUREM. based on logical regression is proposed. The experiment takes Sina Weibo as the research platform to verify the validity and rationality of the model. The results show that the proposed model can evaluate and classify the user's identity objectively and reasonably according to the size of user confidence value (CM), which resolves the limitation and irrationality brought by the traditional method. It not only can identify the traditional low-level false user "zombie powder", but also has a high recognition rate for the new intelligent fake user. At the same time, the results of this paper can also provide necessary reference for Weibo's user influence, the information credibility of Weibo and the fever of Weibo.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TP393.092
本文編號(hào):2201327
[Abstract]:The research of Weibo user's credibility has gradually become one of the hotspots in the current research of Weibo. Its purpose is to evaluate the user's identity category objectively and reasonably, and to identify the false user effectively. However, most of the existing methods remain in the identification of the traditional false user "zombie powder". The method is simple, the function is single, and the ability to distinguish the new intelligent fake user is weak. Can't be reasonable to Weibo user's identity carries on the appraisal. Logical regression is a commonly used statistical analysis method which can be used to classify. It can obtain probabilistic prediction results and can be used to predict Weibo user's identity category. Aiming at the deficiency of the existing identification methods, this paper first analyzes the behavior characteristics of Weibo's false users, from the aspects of online time, posting time, the motive force of the use of Weibo, the origin of Weibo and the interactive behavior. The logical combination of the inherent characteristics of Weibo users is carried out, and the feature variables used to distinguish the user categories are extracted. Then, by using the logical regression algorithm, a user reliability evaluation model WUREM. based on logical regression is proposed. The experiment takes Sina Weibo as the research platform to verify the validity and rationality of the model. The results show that the proposed model can evaluate and classify the user's identity objectively and reasonably according to the size of user confidence value (CM), which resolves the limitation and irrationality brought by the traditional method. It not only can identify the traditional low-level false user "zombie powder", but also has a high recognition rate for the new intelligent fake user. At the same time, the results of this paper can also provide necessary reference for Weibo's user influence, the information credibility of Weibo and the fever of Weibo.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TP393.092
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 張付志;高峰;白龍;;基于攻擊檢測(cè)的用戶(hù)可信度計(jì)算方法[J];計(jì)算機(jī)工程;2010年16期
2 倪吉;孔芳;朱巧明;李培峰;;基于可信度模型的中文人名識(shí)別研究[J];中文信息學(xué)報(bào);2011年03期
3 吳凱;季新生;劉彩霞;;基于行為預(yù)測(cè)的微博網(wǎng)絡(luò)信息傳播建模[J];計(jì)算機(jī)應(yīng)用研究;2013年06期
4 李赫元;俞曉明;劉悅;程學(xué)旗;程工;;中文微博客的垃圾用戶(hù)檢測(cè)[J];中文信息學(xué)報(bào);2014年03期
5 廉捷;周欣;曹偉;劉云;;新浪微博數(shù)據(jù)挖掘方案[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年10期
6 蔣盛益;陳東沂;龐觀松;吳美玲;王連喜;;微博信息可信度分析研究綜述[J];圖書(shū)情報(bào)工作;2013年12期
7 常振海;劉薇;;Logistic回歸模型及其應(yīng)用[J];延邊大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
8 王越;張劍金;劉芳芳;;一種多特征微博僵尸粉檢測(cè)方法與實(shí)現(xiàn)[J];中國(guó)科技論文;2014年01期
,本文編號(hào):2201327
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2201327.html
最近更新
教材專(zhuān)著