基于選擇性神經(jīng)網(wǎng)絡(luò)集成的Web服務(wù)可信性預(yù)測(cè)技術(shù)研究
[Abstract]:With the popularity of service computing technology, Web services have been widely used as an important software resource based on the Internet. In practical application scenarios, the credibility of Web services has become an important goal that people need to consider when choosing and recommending Web services. Quality of service (QoS) is usually an intuitive and important embodiment of Web service trustworthiness. Therefore, it is necessary to predict the service trustworthiness based on the comprehensive analysis of QoS. In order to solve the problem of predicting Web service trustworthiness, the proposed Web service trustworthiness prediction based on selective neural network ensemble is a solution which integrates BP neural network, selective ensemble learning, particle swarm optimization and other technologies. In this scheme, the QoS data information of Web service with known trustworthiness level is used to BP. The network is trained and trained to generate several candidate neural networks, and then the ensemble weights of the candidate neural networks are optimized by particle swarm optimization strategy. The ensemble weights of the neural networks are optimized according to the optimal ensemble weights. Two integration pattern algorithms, PSO-SEN algorithm and QPSO-SEN algorithm, are proposed to verify the feasibility and effectiveness of the selective neural network ensemble-based Web service credibility prediction method and the influence of parameters on the algorithm by comparing the experimental results with other typical methods. The technology has obvious advantages in prediction accuracy, and it has low sensitivity to classifier integration mode, population size, and the number of hidden nodes in the classifier. It has good robustness. In addition, the research on hybrid prediction algorithm based on neural network, ensemble learning and intelligent search will provide some reference for similar management decision-making problems.
【學(xué)位授予單位】:江西財(cái)經(jīng)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18;TP393.09
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈國(guó)華;黃志球;謝冰;朱羿全;廖莉莉;王飛;劉銀陵;;軟件可信評(píng)估研究綜述:標(biāo)準(zhǔn)、模型與工具[J];軟件學(xué)報(bào);2016年04期
2 李玲;劉敏;成國(guó)慶;;一種基于FAHP的多維QoS局部最優(yōu)服務(wù)選擇模型[J];計(jì)算機(jī)學(xué)報(bào);2015年10期
3 何小霞;譚良;;基于Hadoop的可信Web服務(wù)多維QoS權(quán)重最優(yōu)選擇模型[J];計(jì)算機(jī)科學(xué);2015年04期
4 蔡瓊;丁帥;;軟件服務(wù)化背景下的云服務(wù)可信評(píng)估研究[J];計(jì)算機(jī)應(yīng)用研究;2015年04期
5 孫昌愛(ài);趙敏;何嘯;;一種面向Web服務(wù)的綜合可信性度量模型[J];北京科技大學(xué)學(xué)報(bào);2014年04期
6 王尚廣;孫其博;張光衛(wèi);楊放春;;基于云模型的不確定性QoS感知的Skyline服務(wù)選擇[J];軟件學(xué)報(bào);2012年06期
7 趙強(qiáng)利;蔣艷凰;徐明;;選擇性集成算法分類與比較[J];計(jì)算機(jī)工程與科學(xué);2012年02期
8 胡建強(qiáng);李涓子;廖桂平;;一種基于多維服務(wù)質(zhì)量的局部最優(yōu)服務(wù)選擇模型[J];計(jì)算機(jī)學(xué)報(bào);2010年03期
9 楊曉霜;汪源源;;基于Moore-Penrose逆矩陣的選擇性集成[J];光電工程;2009年11期
10 胡志剛;付毅;肖鵬;胡周君;;基于貝葉斯網(wǎng)絡(luò)的網(wǎng)格QoS可信度評(píng)估方法[J];計(jì)算機(jī)工程;2009年07期
,本文編號(hào):2193906
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2193906.html