網(wǎng)頁惡意代碼檢測技術(shù)研究與實(shí)現(xiàn)
[Abstract]:With the development of Web2.0 and cloud technology, more and more applications tend to provide services to users with B / S architecture. However, malicious code also tends to propagate through web pages, especially web pages that use browser vulnerabilities or browser plug-in vulnerabilities to obtain user sensitive data, or even implant system backdoor or extortion software. This way has become the main channel of malicious code dissemination, also is the important link of "underground economy". In this paper, the attack mode and operation flow of web page malicious code are deeply studied, and the main directions and effective ways of existing malicious code detection technology are analyzed, and the dynamic detection scheme of web malicious code based on parsing engine is put forward. A malicious code detection system for web pages is designed and implemented. The main work and achievements of this paper are as follows: (1) aiming at the problem that static text analysis can not effectively detect the malicious code after confusion, Based on the analysis engine, the dynamic detection and extraction of malicious code features are realized. (2) based on the dynamic feature detection technology, a malicious feature extraction model is proposed, which is used to standardize the feature extraction process and format feature vectors. On the basis of machine learning theory and malicious feature extraction model, a web malicious code classification model based on parsing engine is proposed to realize the training and learning of web malicious code samples. (3) A web malicious code detection system is designed and implemented. The components of the system are designed in detail. (4) the system testing environment is built and the performance of the classification model and the function of the web malicious code detection system are tested. The test results show that the system can solve the problem of low detection rate of malicious code in static text analysis.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP393.08
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐青;朱焱;唐壽洪;;分析多類特征和欺詐技術(shù)檢測JavaScript惡意代碼[J];計(jì)算機(jī)應(yīng)用與軟件;2015年07期
2 王金龍;宋斌;丁銳;;Node.js:一種新的Web應(yīng)用構(gòu)建技術(shù)[J];現(xiàn)代電子技術(shù);2015年06期
3 周紹磊;廖劍;史賢俊;;RBF-SVM的核參數(shù)選擇方法及其在故障診斷中的應(yīng)用[J];電子測量與儀器學(xué)報;2014年03期
4 楊帆;張煥國;傅建明;沈志東;;基于圖編輯距離的惡意代碼檢測[J];武漢大學(xué)學(xué)報(理學(xué)版);2013年05期
5 董鵬程;康緋;舒輝;;一種shellcode動態(tài)檢測與分析技術(shù)[J];小型微型計(jì)算機(jī)系統(tǒng);2013年07期
6 楊磊;王化增;陳子凌;;基于支持向量機(jī)的油氣儲量價值等級評價[J];中國石油大學(xué)學(xué)報(自然科學(xué)版);2012年03期
7 王蕊;蘇璞睿;楊軼;馮登國;;一種抗混淆的惡意代碼變種識別系統(tǒng)[J];電子學(xué)報;2011年10期
8 韓宇;仇新梁;魏更宇;;跨站腳本的過濾逃逸技術(shù)綜述[J];保密科學(xué)技術(shù);2010年03期
9 黃建軍;梁彬;;基于植入特征的網(wǎng)頁惡意代碼檢測[J];清華大學(xué)學(xué)報(自然科學(xué)版);2009年S2期
10 陳臘梅;李為;程振林;張曉力;;AJAX跨域訪問的研究與應(yīng)用[J];計(jì)算機(jī)工程與設(shè)計(jì);2008年22期
相關(guān)碩士學(xué)位論文 前5條
1 戴仲政;基于腳本引擎的惡意網(wǎng)頁檢測系統(tǒng)[D];華南理工大學(xué);2014年
2 宋益泉;基于Gearman/MongoDB的非金融交易監(jiān)控報警系統(tǒng)的研究和實(shí)現(xiàn)[D];電子科技大學(xué);2013年
3 劉磊;Windows下緩沖區(qū)溢出漏洞利用技術(shù)Heap spray研究[D];上海交通大學(xué);2012年
4 李金鳳;支持向量機(jī)增量學(xué)習(xí)算法研究[D];中南民族大學(xué);2011年
5 魏為;基于內(nèi)容的網(wǎng)頁惡意代碼檢測的研究與實(shí)現(xiàn)[D];華中科技大學(xué);2011年
,本文編號:2192864
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2192864.html