大型社交網(wǎng)絡(luò)中社團(tuán)挖掘算法的研究
[Abstract]:It is of great significance to excavate the community structure in social networks for revealing the potential laws of the network and grasping the macroscopic characteristics of the network. At present, many community mining algorithms have emerged, some of which have the advantage of near linear complexity, but there are still two limitations in the application of large networks. One is the need to predict the number of network communities. Second, the low complexity of the algorithm is achieved at the expense of accuracy. Therefore, in order to make the existing community mining algorithms applicable to large networks, the two limitations are studied and improved accordingly in this paper. The main work is as follows: (1) the problems of common community mining algorithms in large networks are discussed. It is concluded that low time complexity algorithms have advantages but still have two limitations. Therefore, the current situation of community number estimation methods and labeling propagation community mining algorithms at home and abroad are investigated, and the advantages and disadvantages of these two existing methods are analyzed. (2) the accuracy of existing community number estimation methods is low. In this paper a method of estimating the number of communities using regular loop-free matrix is presented in which the computation is not efficient and the scope of application is limited. In this method, a regular loop free matrix is defined to describe the network, and the distribution of eigenvalues is observed and analyzed. Finally, the number of network communities is estimated by using the maximum position of the eigenspace. The proposed method is verified on artificial networks composed of two classical network generation models. (3) an improved labeling propagation algorithm is presented to deal with the problem of low complexity at the expense of the accuracy and stability of the label propagation algorithm. In this algorithm, all nodes are prioritized by the newly defined composite weights in the label propagation sequence, and the candidate labels are filtered by the contribution degree of the nodes in the process of label propagation. Finally, the new balanced node filtering mechanism is used to optimize the convergence conditions of the algorithm. The algorithm is validated on two standard large social network datasets. The experimental results show that the influence of degree heterogeneity distribution on the estimation of community number is mainly eliminated by using the regular loop free matrix estimation method, thus the accuracy of the estimation results is improved, and the range of application is not limited. Compared with label propagation algorithm and other two large network community mining algorithms, the improved labeling propagation algorithm not only has significant advantages in performance and quality, but also improves the efficiency of community mining.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP311.13;TP393.09
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉功申;張浩霖;孟魁;蘇波;;非隨機(jī)的標(biāo)簽傳播社區(qū)劃分算法[J];上海交通大學(xué)學(xué)報;2015年08期
2 趙寶峰;趙菊敏;李燈熬;;一種穩(wěn)定的標(biāo)簽傳播社區(qū)發(fā)現(xiàn)算法[J];太原理工大學(xué)學(xué)報;2013年04期
3 張聰;沈惠璋;;基于譜方法的復(fù)雜網(wǎng)絡(luò)中社團(tuán)結(jié)構(gòu)的模塊度[J];系統(tǒng)工程理論與實踐;2013年05期
4 康旭彬;賈彩燕;;一種改進(jìn)的標(biāo)簽傳播快速社區(qū)發(fā)現(xiàn)方法[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2013年01期
5 黃健斌;鐘翔;孫鶴立;茆婉婷;;基于相似性模塊度最大約束標(biāo)記傳播的網(wǎng)絡(luò)社團(tuán)發(fā)現(xiàn)算法[J];北京大學(xué)學(xué)報(自然科學(xué)版);2013年03期
6 季青松;趙郁忻;陳樂生;陳秀真;李生紅;;有效改善標(biāo)簽傳播算法魯棒性的途徑[J];信息安全與通信保密;2012年09期
7 趙卓翔;王軼彤;田家堂;周澤學(xué);;社會網(wǎng)絡(luò)中基于標(biāo)簽傳播的社區(qū)發(fā)現(xiàn)新算法[J];計算機(jī)研究與發(fā)展;2011年S3期
8 金弟;劉杰;楊博;何東曉;劉大有;;局部搜索與遺傳算法結(jié)合的大規(guī)模復(fù)雜網(wǎng)絡(luò)社區(qū)探測[J];自動化學(xué)報;2011年07期
9 汪小帆;劉亞冰;;復(fù)雜網(wǎng)絡(luò)中的社團(tuán)結(jié)構(gòu)算法綜述[J];電子科技大學(xué)學(xué)報;2009年05期
10 李曉佳;張鵬;狄增如;樊瑛;;復(fù)雜網(wǎng)絡(luò)中的社團(tuán)結(jié)構(gòu)[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2008年03期
相關(guān)碩士學(xué)位論文 前3條
1 王錦錦;層次凝聚和主動學(xué)習(xí)半監(jiān)督社團(tuán)檢測算法研究[D];蘭州大學(xué);2014年
2 黃中杰;社交網(wǎng)絡(luò)中的視頻觀看質(zhì)量優(yōu)化[D];復(fù)旦大學(xué);2012年
3 李亞飛;復(fù)雜網(wǎng)絡(luò)中的社團(tuán)結(jié)構(gòu)檢測算法研究[D];北京交通大學(xué);2011年
,本文編號:2159165
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2159165.html