基于Apriori算法的證據(jù)分析系統(tǒng)設(shè)計(jì)
[Abstract]:With the development of computer technology and network technology, their role in people's life has gradually increased and has become a necessary part of life. Although the rapid development of the network provides great shortcuts and conveniences for human beings, the appearance of network viruses, hacker invading and network offense is also given to people's property and personal letter. Interest security has brought very big negative effects and has become an urgent problem to be solved. The problem of network security has been paid more and more attention. As an important part of network security, the role of network forensics has been self-evident, and evidence analysis is the most important step in this process. So this article is devoted to the research of evidence analysis and the fusion of association rules mining algorithm to obtain evidence, and design and implement an evidence analysis system based on Apriori algorithm. Finally, in the process of improvement, the test results are satisfactory by simulation attack. The following is a brief summary of the contents of this paper: (1) Referring to the research situation of many frontiers at home and abroad, combining with its own situation, doing relevant investigation, carrying out the requirement analysis to the system, making a positioning for the research direction and learning related technologies, including Wireshark packet technology, MD5 data integrity verification technology, Webservice technology, etc. (2) learning a large number of data mining association rules. After knowledge, it has a certain understanding of association analysis, and puts forward the corresponding improvement to the traditional association rule method Apriori algorithm. The improved algorithm can effectively alleviate the shortcomings of the traditional Apriori algorithm and analyze the data quickly. (3) the basic framework and internal detailed work of the system are designed on the basis of the requirement analysis. Firstly, the system is briefly designed. In this paper, the evidence analysis system based on Apriori algorithm is divided into two subsystems, the client and the server. The client is responsible for collecting data and the server is responsible for the analysis of the data. In particular, the client is logged in, data collection, data storage, data upload, and downloading reports. The user login module is responsible for the user's identity according to the user name and password entered by the user. The data acquisition module is responsible for collecting data and providing data support for the analysis of evidence. The main design is to collect the network data packets and download the records of the users, and the data storage module is responsible for collecting data. The data collected by the module is stored in the database, which not only facilitates the later data analysis, but also preserves the evidence. The data upload module uploads the data to the Webservice platform to facilitate the direct call of other users; the download report module is to generate the evidence report on the server side, and the user can download the evidence report on the client side and feed back the result feedback. The server side is composed of three functional modules, which are data view, data analysis, and report generation. The data view module is mainly responsible for checking the unprocessed data collected by the client. The data analysis module mainly uses various methods to process the original data and obtain the necessary evidence. This article mainly uses the improved Apri The ori algorithm analyses the data collected by the client and obtains the evidence, such as the detection of flood attack, the analysis of the user's behavior of downloading the file, etc. the generation report module is displayed in the form of report and presented to the user after obtaining the evidence. Finally, the database is designed and the data are designed for the customer and server end respectively. Table, ensure the integrity of data storage; (4) after the completion of the requirements analysis and system design, this paper uses the C/S architecture model and VS2010 as the development software, realizes the functions of the evidence analysis system improved by the Apriori algorithm, introduces the code and displays the system interface. Finally, through testing, the system can be found. Analyze the correlation between data efficiently and accurately, detect attacks and obtain relevant evidence.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP311.13;TP393.08
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王華;梁華銀;;改進(jìn)的Apriori算法在高校教學(xué)管理系統(tǒng)中的應(yīng)用[J];科技信息(學(xué)術(shù)研究);2008年34期
2 張玉強(qiáng);于鳳全;金立峰;朱曉飛;;Apriori算法在雷達(dá)故障診斷系統(tǒng)中的應(yīng)用研究[J];電腦知識與技術(shù);2011年07期
3 李陽;朱宗勝;;基于優(yōu)化Apriori算法的入侵檢測系統(tǒng)模型設(shè)計(jì)[J];計(jì)算機(jī)安全;2009年11期
4 王冬秀;胡迎春;李輝;;改進(jìn)的Apriori算法在股票分析中的應(yīng)用研究[J];科技通報(bào);2013年03期
5 高琰;王臺華;郭帆;余敏;;應(yīng)用非迭代Apriori算法檢測分布式拒絕服務(wù)攻擊[J];計(jì)算機(jī)應(yīng)用;2011年06期
6 鄭麟;;一種直接生成頻繁項(xiàng)集的分治Apriori算法[J];計(jì)算機(jī)應(yīng)用與軟件;2014年04期
7 陶榮;;基于Apriori算法在學(xué)生信息管理系統(tǒng)中的應(yīng)用與研究[J];計(jì)算機(jī)光盤軟件與應(yīng)用;2012年21期
8 明勇;;基于數(shù)據(jù)挖掘的Apriori算法在入侵檢測中的應(yīng)用[J];電腦知識與技術(shù);2005年35期
9 肖桂艷;周滿元;;Apriori算法在基于網(wǎng)絡(luò)入侵檢測系統(tǒng)中的應(yīng)用[J];微計(jì)算機(jī)信息;2010年06期
10 吳昊;李軍國;;一種改進(jìn)的Apriori算法在交通信息化中的應(yīng)用[J];信息化縱橫;2009年08期
相關(guān)會(huì)議論文 前7條
1 劉擎;劉云濤;羅翌;;關(guān)聯(lián)規(guī)則挖掘Apriori算法在當(dāng)代名老中醫(yī)流感醫(yī)案挖掘中的應(yīng)用及改進(jìn)探討[A];2012中國中西醫(yī)結(jié)合學(xué)會(huì)急救醫(yī)學(xué)專業(yè)委員會(huì)學(xué)術(shù)年會(huì)論文集[C];2012年
2 陳波;董鵬;邵勇;;基于Apriori算法及其改進(jìn)算法綜述[A];中國通信學(xué)會(huì)第五屆學(xué)術(shù)年會(huì)論文集[C];2008年
3 張彥;劉偉;;結(jié)合超市數(shù)據(jù)的關(guān)聯(lián)規(guī)則Apriori算法淺析[A];2007北京地區(qū)高校研究生學(xué)術(shù)交流會(huì)通信與信息技術(shù)會(huì)議論文集(上冊)[C];2008年
4 楊宗波;宗容;?;彭廣軍;;入侵檢測中Apriori算法的研究與改進(jìn)[A];2009年研究生學(xué)術(shù)交流會(huì)通信與信息技術(shù)論文集[C];2009年
5 梁昌勇;趙艷霞;;基于RFM分析的銀行信用卡客戶的行為評分模型——應(yīng)用自組織映射神經(jīng)網(wǎng)絡(luò)SOM和Apriori方法[A];第二屆全國信息檢索與內(nèi)容安全學(xué)術(shù)會(huì)議(NCIRCS-2005)論文集[C];2005年
6 高明;盛立;劉希玉;;關(guān)聯(lián)規(guī)則挖掘中Apriori算法的一種改進(jìn)[A];山東省計(jì)算機(jī)學(xué)會(huì)2005年信息技術(shù)與信息化研討會(huì)論文集(二)[C];2005年
7 萬敏;潘笑;賓誼沅;;利用Apriori算法實(shí)現(xiàn)WEB的個(gè)性化服務(wù)[A];2005通信理論與技術(shù)新進(jìn)展——第十屆全國青年通信學(xué)術(shù)會(huì)議論文集[C];2005年
相關(guān)碩士學(xué)位論文 前10條
1 趙宏利;改進(jìn)的Apriori算法在大學(xué)生心理分析中的研究[D];華中師范大學(xué);2015年
2 王丹;基于云計(jì)算的關(guān)聯(lián)規(guī)則Apriori算法的研究與實(shí)現(xiàn)[D];南昌大學(xué);2015年
3 楊財(cái)英;Apriori算法及其在學(xué)生成績分析中的應(yīng)用研究[D];湖南大學(xué);2016年
4 吳博;Apriori算法挖掘技術(shù)在WANO人因數(shù)據(jù)中的應(yīng)用研究[D];南華大學(xué);2016年
5 侯建輝;基于改進(jìn)Apriori算法的名老中醫(yī)治療高血壓病驗(yàn)案挖掘研究[D];山東中醫(yī)藥大學(xué);2016年
6 孫朝暉;基于Apriori算法的證據(jù)分析系統(tǒng)設(shè)計(jì)[D];山東師范大學(xué);2017年
7 王達(dá)明;基于云計(jì)算與醫(yī)療大數(shù)據(jù)的Apriori算法的優(yōu)化研究[D];北京郵電大學(xué);2015年
8 楊國英;泛在網(wǎng)下基于Apriori算法的移動(dòng)群組的位置預(yù)測[D];南京郵電大學(xué);2013年
9 丁磊;一種改進(jìn)的Apriori算法在手機(jī)評教系統(tǒng)中的研究[D];華中師范大學(xué);2014年
10 朱惠;關(guān)聯(lián)規(guī)則中Apriori算法的研究與改進(jìn)[D];安徽理工大學(xué);2014年
,本文編號:2128895
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2128895.html