天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于G-K算法的網(wǎng)絡安全態(tài)勢預測模型

發(fā)布時間:2018-07-05 13:53

  本文選題:G-K算法 + 網(wǎng)絡安全; 參考:《科技通報》2017年11期


【摘要】:針對普通Kalman算法在網(wǎng)絡安全態(tài)勢預測中對初始數(shù)據(jù)的依賴性較高,且預測精度不夠高的問題,本文提出了一種基于G-K算法的網(wǎng)絡安全態(tài)勢預測模型。首先利用灰關聯(lián)熵分析方法選出影響網(wǎng)絡安全態(tài)勢的關鍵因素,然后結(jié)合關鍵因素建立網(wǎng)絡安全態(tài)勢的多元關系模型,最后選用KDD-cup99的部分數(shù)據(jù)作為實驗數(shù)據(jù)源對改進算法進行實例仿真。結(jié)果表明,G-K算法能夠快速跟蹤網(wǎng)絡安全態(tài)勢的變化趨勢,預測精度優(yōu)于普通Kalman算法。
[Abstract]:In order to solve the problem that the common Kalman algorithm has high dependence on the initial data in the network security situation prediction and the prediction accuracy is not high enough, this paper proposes a network security situation prediction model based on the G-K algorithm. First, the key factors that affect the network security situation are selected by the grey relational entropy analysis method, and then the key factors are combined with the key factors. The multi relation model of network security situation is established. Finally, some data of KDD-cup99 are selected as the experimental data source to simulate the improved algorithm. The results show that the G-K algorithm can quickly track the trend of network security situation, and the prediction accuracy is better than the common Kalman algorithm.
【作者單位】: 山西電力職業(yè)技術學院;青島科技大學自動化學院;
【分類號】:TP393.08


本文編號:2100423

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2100423.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶197b9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com