天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于神經(jīng)網(wǎng)絡(luò)的入侵檢測相關(guān)技術(shù)研究

發(fā)布時(shí)間:2018-06-29 05:08

  本文選題:入侵檢測 + 神經(jīng)網(wǎng)絡(luò) ; 參考:《山東大學(xué)》2016年博士論文


【摘要】:隨著互聯(lián)網(wǎng)規(guī)模的日漸增大,網(wǎng)絡(luò)新興服務(wù)逐步影響著人們的日常生活,同時(shí),網(wǎng)絡(luò)安全問題也倍受人們關(guān)注。面對(duì)攻擊行為日益復(fù)雜化的發(fā)展趨勢,入侵檢測系統(tǒng)可以通過實(shí)時(shí)分析獲取的計(jì)算機(jī)系統(tǒng)、網(wǎng)絡(luò)和用戶的事件信息,來評(píng)估計(jì)算機(jī)系統(tǒng)和網(wǎng)絡(luò)的安全性。傳統(tǒng)環(huán)境下的入侵檢測技術(shù)一直都是各研究機(jī)構(gòu)的研究熱點(diǎn),如何提高入侵檢測系統(tǒng)的檢測性能至關(guān)重要。同時(shí),云計(jì)算作為新的計(jì)算模式,改變了傳統(tǒng)計(jì)算機(jī)體系架構(gòu),但是其虛擬化、分布式和超大規(guī)模的特點(diǎn)給計(jì)算機(jī)系統(tǒng)、網(wǎng)絡(luò)和用戶帶來了巨大的安全挑戰(zhàn)。為了有效應(yīng)對(duì)這些新的挑戰(zhàn),研究云環(huán)境下的入侵檢測系統(tǒng)同樣具有重要的現(xiàn)實(shí)意義。神經(jīng)網(wǎng)絡(luò)具有自學(xué)習(xí)、聯(lián)想記憶和可高速并行計(jì)算的特點(diǎn),使其在很多應(yīng)用領(lǐng)域都取得了顯著的效果。將神經(jīng)網(wǎng)絡(luò)技術(shù)應(yīng)用于入侵檢測領(lǐng)域,已經(jīng)引起了國內(nèi)外相關(guān)學(xué)者的普遍關(guān)注。本文利用神經(jīng)網(wǎng)絡(luò)理論,對(duì)傳統(tǒng)環(huán)境和云環(huán)境下的入侵檢測系統(tǒng)相關(guān)問題進(jìn)行了研究。本文首先針對(duì)傳統(tǒng)環(huán)境下的分布式入侵檢測系統(tǒng)存在中央節(jié)點(diǎn)負(fù)載大,易造成單點(diǎn)失效等問題,研究可高速并行計(jì)算,易于硬件實(shí)現(xiàn),檢測精度高的完全分布式協(xié)同入侵檢測系統(tǒng)(第二章)。然后為彌補(bǔ)傳統(tǒng)環(huán)境下的入侵檢測系統(tǒng)普遍存在缺乏主動(dòng)防御能力的缺點(diǎn),研究在目標(biāo)主機(jī)或操作系統(tǒng)遭到破壞之前,可預(yù)測即將發(fā)生攻擊行為的入侵預(yù)防系統(tǒng)(第三章)。隨著云計(jì)算的發(fā)展,傳統(tǒng)環(huán)境下的入侵檢測系統(tǒng)在海量入侵?jǐn)?shù)據(jù)檢測率和檢測速度方面都存在著局限性,已經(jīng)不能滿足云環(huán)境下入侵檢測系統(tǒng)的需求,因此本文研究了可自主學(xué)習(xí)、動(dòng)態(tài)拓展的基于網(wǎng)絡(luò)的云入侵檢測系統(tǒng)(第四章)。云計(jì)算的核心是虛擬化技術(shù),針對(duì)虛擬機(jī)在遷移過程中容易因?yàn)橄到y(tǒng)存在的漏洞或后門缺陷遭受病毒或黑客攻擊,造成虛擬機(jī)異常遷移等安全問題,本文最后研究了虛擬機(jī)遷移調(diào)度監(jiān)控系統(tǒng),保障虛擬計(jì)算環(huán)境的安全(第五章)。本文的主要?jiǎng)?chuàng)新工作如下:(1)通過對(duì)分布式入侵檢測系統(tǒng)的研究提出了一種基于離散細(xì)胞神經(jīng)網(wǎng)絡(luò)(DTCNN)和狀態(tài)控制細(xì)胞神經(jīng)網(wǎng)絡(luò)(SCCNN)的完全分布式協(xié)同入侵檢測系統(tǒng)。其中,基于DTCNN的多層檢測模型作為本地節(jié)點(diǎn)檢測分類器,基于改進(jìn)SCCNN的一維環(huán)形檢測模型作為全局檢測器。每個(gè)本地節(jié)點(diǎn)檢測器負(fù)責(zé)獨(dú)立地檢測本地網(wǎng)絡(luò)入侵行為,然后周期性地發(fā)送檢測消息與其相鄰節(jié)點(diǎn)交換本地檢測信息,構(gòu)成全局檢測器。針對(duì)本地節(jié)點(diǎn)檢測器的模板參數(shù),提出了基于改進(jìn)粒子群算法的參數(shù)選擇算法,通過能量函數(shù)約束法構(gòu)造新的適應(yīng)度函數(shù)來避免粒子群算法陷入早熟收斂并尋找到參數(shù)最優(yōu)解。針對(duì)全局檢測器,提出了一種基于求解線性矩陣不等式的模板參數(shù)求解方法,使系統(tǒng)達(dá)到理想的穩(wěn)定輸出,實(shí)現(xiàn)檢測應(yīng)用。仿真實(shí)驗(yàn)結(jié)果表明本檢測系統(tǒng)與其他分布式入侵檢測系統(tǒng)相比具有更高的檢測率。(2)通過對(duì)入侵預(yù)測系統(tǒng)的研究提出了基于神經(jīng)網(wǎng)絡(luò)改進(jìn)時(shí)序分析方法的入侵預(yù)測模型。為降低入侵預(yù)測系統(tǒng)的誤報(bào)率和漏報(bào)率,提高入侵預(yù)測模型預(yù)測精度,提出了基于灰色神經(jīng)網(wǎng)絡(luò)改進(jìn)ARIMA的網(wǎng)絡(luò)入侵預(yù)測模型,采用BP網(wǎng)絡(luò)映射灰色預(yù)測模型的微分方程解,構(gòu)造出新的灰色神經(jīng)網(wǎng)絡(luò),對(duì)基于ARIMA的網(wǎng)絡(luò)入侵預(yù)測模型預(yù)測殘差進(jìn)行修正。此外,為提高多尺度網(wǎng)絡(luò)流量時(shí)序的預(yù)測精度,本文還提出基于小波分解和改進(jìn)最小復(fù)雜度回聲狀態(tài)網(wǎng)絡(luò)的網(wǎng)絡(luò)入侵預(yù)測模型(IMCESN-WD),首先對(duì)原始網(wǎng)絡(luò)流量時(shí)序進(jìn)行小波分解預(yù)處理,然后對(duì)分解后的各個(gè)尺度子序列建立最小均方誤差和誤差變化率改進(jìn)最小復(fù)雜度回聲狀態(tài)網(wǎng)絡(luò)的預(yù)測模型,最后利用權(quán)值因子將子序列預(yù)測結(jié)果進(jìn)行整合。仿真實(shí)驗(yàn)證實(shí)上述方法可通過對(duì)網(wǎng)絡(luò)流量數(shù)據(jù)進(jìn)行建模來衡量網(wǎng)絡(luò)的安全狀況,對(duì)入侵行為進(jìn)行預(yù)警,預(yù)測精度較高。(3)通過對(duì)基于網(wǎng)絡(luò)的云入侵預(yù)測系統(tǒng)的研究提出了一種基于改進(jìn)生長自組織神經(jīng)網(wǎng)絡(luò)的云網(wǎng)絡(luò)入侵檢測系統(tǒng)。該系統(tǒng)利用映射規(guī)約主成分分析算法對(duì)海量入侵?jǐn)?shù)據(jù)進(jìn)行降維,并將降維后的數(shù)據(jù)利用改進(jìn)的生長自組織神經(jīng)網(wǎng)絡(luò)算法進(jìn)行動(dòng)態(tài)更新檢測,利用遺傳算法對(duì)基于生長自組織神經(jīng)網(wǎng)絡(luò)檢測模型拓展出的自組織神經(jīng)網(wǎng)絡(luò)子網(wǎng)中的連接權(quán)值進(jìn)行優(yōu)化,加速檢測網(wǎng)絡(luò)收斂。仿真實(shí)驗(yàn)表明本方法可以實(shí)現(xiàn)對(duì)海量入侵?jǐn)?shù)據(jù)的實(shí)時(shí)檢測和新型攻擊的擴(kuò)展檢測,檢測算法與其他算法相比有較高的有效性和可拓展性。(4)通過對(duì)虛擬機(jī)遷移監(jiān)控系統(tǒng)的研究提出了基于改進(jìn)細(xì)胞神經(jīng)網(wǎng)絡(luò)的虛擬機(jī)遷移調(diào)度方法。遷移調(diào)度過程可等價(jià)于旅行商問題,通過改進(jìn)細(xì)胞神經(jīng)網(wǎng)絡(luò)的能量函數(shù)使輸出的平衡點(diǎn)為實(shí)時(shí)網(wǎng)絡(luò)期望的特征值,系統(tǒng)達(dá)到穩(wěn)定狀態(tài)。本文在遷移調(diào)度局部規(guī)則和全局規(guī)則的基礎(chǔ)上確定了參數(shù)關(guān)系,該網(wǎng)絡(luò)模型參數(shù)關(guān)系可以轉(zhuǎn)化為求解約束優(yōu)化問題。然后,基于冒泡排序粒子群算法優(yōu)化模板參數(shù),避免求解參數(shù)過程陷入局部最優(yōu)。仿真實(shí)驗(yàn)表明本文的方法可以制定出有效的虛擬機(jī)遷移調(diào)度策略,減少了遷移持續(xù)時(shí)間和遷移數(shù)據(jù)量。
[Abstract]:With the increasing scale of the Internet, network emerging services have gradually affected people's daily life. At the same time, the network security problem has attracted much attention. In the face of the increasingly complicated development trend of attack behavior, the intrusion detection system can evaluate and estimate the computer system, network and user's event information obtained by real-time analysis. The security of the computer system and network. The intrusion detection technology under the traditional environment has always been the research hotspot of the research institutions. How to improve the detection performance of the intrusion detection system is very important. At the same time, as a new computing model, cloud computing has changed the traditional computer architecture, but its virtualization, distribution and super scale are special. Computer systems, networks and users have brought great security challenges. In order to effectively cope with these new challenges, it is also of great practical significance to study intrusion detection systems in the cloud environment. Neural networks have the characteristics of self learning, associative memory and high speed parallel computing, making it remarkable in many applications. The application of neural network technology in the field of intrusion detection has caused widespread concern at home and abroad. This paper uses neural network theory to study the related problems of intrusion detection system under the traditional environment and cloud environment. This paper first aims at the existence of the central node in the traditional distributed intrusion detection system. When the point load is large and it is easy to cause a single point failure, we can study the complete distributed cooperative intrusion detection system (second chapter) which can be implemented in high speed parallel computing, easy to implement hardware and high detection precision, and then to make up for the shortcomings of the traditional intrusion detection system, which is generally lack of the active defense capability. Before the destruction, the intrusion prevention system (third chapter) can be predicted. With the development of the cloud computing, the intrusion detection system under the traditional environment has limitations in the detection rate and detection speed of massive intrusion data, and can not meet the requirements of the intrusion detection system under the cloud environment. Main learning, dynamic expansion of network based cloud intrusion detection system (fourth chapter). The core of the cloud computing is the virtualization technology. In view of the vulnerability of the system to the virus or hacker attack, the virtual machine is vulnerable to the virus or hacker attacks in the process of migration. Finally, the virtual machine migration is caused by the virtual machine migration. The scheduling monitoring system ensures the security of the virtual computing environment (fifth chapters). The main innovations of this paper are as follows: (1) a fully distributed cooperative intrusion detection system based on the discrete cellular neural network (DTCNN) and the state controlled cell neural network (SCCNN) is proposed by the research of the distributed intrusion detection system. Among them, the system is based on DTC The multi-layer detection model of NN is used as the local node detection classifier, and the one dimension ring detection model based on improved SCCNN is used as the global detector. Each local node detector is responsible for detecting local network intrusion independently, and then periodically sending the detection messages to exchange local detection information with their adjacent nodes to form a global detector. In view of the template parameters of local node detector, a parameter selection algorithm based on Improved Particle Swarm Optimization (PSO) is proposed. A new fitness function is constructed by energy function constraint method to avoid precocious convergence and find the optimal solution of the parameter. A linear matrix inequality is proposed for the global detector. The template parameter solution method makes the system achieve the ideal stable output and realizes the detection application. The simulation experiment results show that the detection system has a higher detection rate compared with the other distributed intrusion detection systems. (2) the intrusion prediction model based on the neural network improved time series analysis method is put forward by the Research of the intrusion prediction system. In order to reduce the false alarm rate and false alarm rate of the intrusion prediction system and improve the prediction accuracy of the intrusion prediction model, a network intrusion prediction model based on the grey neural network improved ARIMA is proposed. A new grey neural network is constructed with the BP network mapping the differential equation solution of the grey prediction model, and the prediction model of network intrusion based on ARIMA is predicted. In addition, in order to improve the prediction accuracy of multiscale network traffic sequence, this paper also proposes a network intrusion prediction model (IMCESN-WD) based on wavelet decomposition and improved minimum complexity echo state network. Firstly, the original network traffic sequence is preprocessed by wavelet decomposition, and then the decomposed sub scale subsequences are built. The minimum mean square error and the error change rate are established to improve the prediction model of the least complex echo state network. Finally, the subsequence prediction results are integrated with the weight factor. The simulation experiment proves that the above method can measure the network security by modeling the network traffic data, early warning and prediction accuracy for the intrusion behavior. (3) a cloud network intrusion detection system based on improved growth self-organizing neural network is proposed through the study of network based cloud intrusion prediction system. The system uses mapped protocol principal component analysis algorithm to reduce the dimension of mass intrusion data, and uses the improved growth self-organizing neural network to reduce the dimensionality after reducing the dimension. The algorithm performs dynamic update detection and optimizes the connection weights in the self-organizing neural network subnet based on the growth self-organizing neural network detection model by genetic algorithm, and accelerates the convergence of the detection network. The simulation experiment shows that this method can realize the real-time detection of massive intrusion data and the extended detection of new attacks. The detection algorithm has higher effectiveness and expansibility compared with other algorithms. (4) a migration scheduling method based on improved cellular neural network is proposed through the study of the virtual machine migration monitoring system. The migration scheduling process can be equivalent to the traveling salesman problem, and the output balance is made by improving the energy function of the fine cell neural network. The parameter relationship is determined on the basis of local rules and global rules of migration and scheduling, and the parameter relation of the network model can be transformed into a constrained optimization problem. Then, the bubble sorting algorithm is used to optimize the template parameters and avoid the solution of the parameter process. Simulation results show that the proposed method can formulate effective migration scheduling strategies for virtual machines, reducing migration duration and migrating data volume.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP393.08;TP183


本文編號(hào):2080982

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2080982.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bd147***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
欧美激情床戏一区二区三| 亚洲第一区欧美日韩在线| 欧美日韩精品视频在线| 亚洲一区精品二人人爽久久| 国产99久久精品果冻传媒| 麻豆在线观看一区二区| 国产亚洲欧美日韩国亚语| 大香蕉大香蕉手机在线视频| 亚洲精品中文字幕无限乱码| 黄色日韩欧美在线观看| 又色又爽又黄的三级视频| 精品少妇一区二区视频| 欧美日韩一区二区午夜| 人体偷拍一区二区三区| 欧美乱妇日本乱码特黄大片| 手机在线观看亚洲中文字幕| 成年人免费看国产视频| 欧美整片精品日韩综合| 在线免费不卡亚洲国产| av中文字幕一区二区三区在线| 欧美日韩亚洲国产精品| 午夜福利国产精品不卡| 日本一本在线免费福利| 91偷拍视频久久精品| 国产精品免费视频专区| 国产一区二区三区精品免费| 国产成人精品一区二区在线看| 出差被公高潮久久中文字幕| 亚洲精品福利视频在线观看| 久久国产人妻一区二区免费| 精品久久少妇激情视频| 绝望的校花花间淫事2| 日本久久精品在线观看| 最近最新中文字幕免费| 日韩精品你懂的在线观看| 国产又色又爽又黄的精品视频| 日韩精品第一区二区三区| 免费国产成人性生活生活片| 一区二区三区亚洲国产| 国产精品第一香蕉视频| 国产一区二区三区口爆在线|