面向移動(dòng)互聯(lián)網(wǎng)的業(yè)務(wù)分析和資源優(yōu)化系統(tǒng)實(shí)現(xiàn)
本文選題:移動(dòng)互聯(lián)網(wǎng)大數(shù)據(jù) + 業(yè)務(wù)流量分析 ; 參考:《北京郵電大學(xué)》2014年碩士論文
【摘要】:隨著移動(dòng)互聯(lián)網(wǎng)的高速發(fā)展,以智能手機(jī)和平板電腦為代表的移 動(dòng)終端更新?lián)Q代的頻率越來(lái)越高,數(shù)據(jù)業(yè)務(wù)的種類(lèi)不斷增加且其流量 占比日漸增大,給電信運(yùn)營(yíng)商的服務(wù)水平提出了更為嚴(yán)峻的挑戰(zhàn)。與 此同時(shí),數(shù)據(jù)業(yè)務(wù)的迅猛發(fā)展使得蜂窩網(wǎng)絡(luò)中業(yè)務(wù)、資源和計(jì)費(fèi)等的 數(shù)據(jù)量日漸龐大,從而向移動(dòng)互聯(lián)中的數(shù)據(jù)存儲(chǔ)、處理和分析提出了 更高的要求,因此,運(yùn)營(yíng)商面對(duì)網(wǎng)絡(luò)流量的迅速增長(zhǎng),亟需新的分析 工具來(lái)充分挖掘大數(shù)據(jù)中的價(jià)值,解決將流量轉(zhuǎn)變?yōu)樾б娴碾y題,最 終實(shí)現(xiàn)蜂窩網(wǎng)絡(luò)流量經(jīng)營(yíng)和智能化管道等發(fā)展戰(zhàn)略。業(yè)務(wù)流量作為用戶(hù)實(shí)際業(yè)務(wù)行為的載體,能夠在一定程度上反映 用戶(hù)的行為特征和對(duì)業(yè)務(wù)的偏好規(guī)律,因此建立準(zhǔn)確可靠地業(yè)務(wù)流量 模型有助于運(yùn)營(yíng)商把握用戶(hù)行為特征,并依據(jù)該特征制定相應(yīng)的運(yùn)營(yíng) 策略,從而提高電信運(yùn)營(yíng)商的服務(wù)質(zhì)量。移動(dòng)互聯(lián)網(wǎng)中的業(yè)務(wù)種類(lèi)繁 多,數(shù)據(jù)業(yè)務(wù)種類(lèi)繁多,為簡(jiǎn)化研究的復(fù)雜性,必須依據(jù)業(yè)務(wù)協(xié)議規(guī) 范和流量特性對(duì)其進(jìn)行合理有效的分類(lèi),最終建立準(zhǔn)確的業(yè)務(wù)流量模 型。以往關(guān)于移動(dòng)互聯(lián)網(wǎng)資源的研究大多都忽視業(yè)務(wù)類(lèi)型對(duì)網(wǎng)絡(luò)資源 占用情況的影響,然而業(yè)務(wù)類(lèi)型和資源之間卻存在非常密切的內(nèi)在聯(lián) 系。因此,本文從實(shí)測(cè)數(shù)據(jù)出發(fā),充分研究了不同業(yè)務(wù)的流量特征以 及用戶(hù)行為特征,進(jìn)一步建立了業(yè)務(wù)資源映射模型,并在此基礎(chǔ)上開(kāi) 發(fā)了基于SQL Server的業(yè)務(wù)流量分析和資源優(yōu)化平臺(tái),從而為蜂窩 網(wǎng)絡(luò)擴(kuò)容和優(yōu)化提供一定的理論指導(dǎo)和技術(shù)支撐。面對(duì)大數(shù)據(jù)對(duì)移動(dòng) 互聯(lián)網(wǎng)的挑戰(zhàn),本文還引入了基于Hadoop的業(yè)務(wù)流量分析系統(tǒng),通 過(guò)HDFS分布式存儲(chǔ)系統(tǒng)和MapReduce并行處理框架為移動(dòng)互聯(lián)網(wǎng)中 的大數(shù)據(jù)分析提供了一套解決方案,從而充分挖掘業(yè)務(wù)流量大數(shù)據(jù)中 包含的價(jià)值,提高網(wǎng)絡(luò)運(yùn)營(yíng)效率和服務(wù)水平。
[Abstract]:With the rapid development of mobile Internet, the frequency of mobile terminals, represented by smart phones and tablets, is becoming higher and higher, and the types of data services are increasing and their traffic ratio is increasing day by day. To the service level of telecom operators put forward a more severe challenge. At the same time, with the rapid development of data services, the amount of data such as services, resources and billing in cellular networks is increasing, which leads to the storage of data in mobile interconnection. Therefore, facing the rapid growth of network traffic, operators urgently need new analytical tools to fully tap the value of big data and solve the problem of transforming traffic into benefits. The ultimate realization of cellular network traffic management and intelligent pipeline development strategy. As the carrier of the user's actual business behavior, the service flow can reflect the characteristics of the user's behavior and the law of the user's preference for the business to a certain extent. Therefore, establishing an accurate and reliable service flow model is helpful for operators to grasp the characteristics of user behavior and formulate corresponding operation strategies according to the characteristics, thus improving the service quality of telecom operators. In order to simplify the complexity of the research, it is necessary to classify the mobile Internet according to the rules of service protocol and the characteristics of traffic, in order to simplify the complexity of the research, it is necessary to classify it reasonably and effectively. Finally, an accurate business flow model is established. In the past researches on mobile Internet resources mostly ignored the influence of service types on the occupation of network resources. However there is a very close internal connection between service types and resources. Therefore, based on the measured data, the traffic characteristics and user behavior characteristics of different services are fully studied in this paper, and the service resource mapping model is further established. On this basis, a platform for traffic analysis and resource optimization based on SQL Server is developed, which provides some theoretical guidance and technical support for the expansion and optimization of cellular networks. In the face of the challenge of big data to the mobile Internet, this paper also introduces a traffic analysis system based on Hadoop. Through the HDFS-distributed storage system and MapReduce parallel processing framework, it provides a set of solutions for big data analysis in the mobile Internet, thus fully mining the value contained in the traffic big data. Improve network operation efficiency and service level.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TP393.01;TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 張興;顏志;肖靜;蔡雯琦;王文博;;無(wú)線網(wǎng)絡(luò)業(yè)務(wù)行為——特性分析與行為建模[J];北京郵電大學(xué)學(xué)報(bào);2010年05期
2 張柘宏;;QQ短數(shù)據(jù)業(yè)務(wù)對(duì)無(wú)線資源的需求及影響[J];硅谷;2010年22期
3 王健;張耀蘭;;不同類(lèi)型數(shù)據(jù)業(yè)務(wù)對(duì)無(wú)線資源的需求及影響分析[J];中國(guó)新通信;2010年01期
4 邢丹;耿玉波;;智能手機(jī)的快速發(fā)展及其對(duì)移動(dòng)網(wǎng)絡(luò)的影響分析[J];郵電設(shè)計(jì)技術(shù);2010年10期
5 李志軍;楊濤;陸曉東;;基于即時(shí)通信類(lèi)業(yè)務(wù)模型的CDMA無(wú)線資源分析和優(yōu)化[J];移動(dòng)通信;2011年11期
6 汪丁鼎;龔追飛;潘江永;;智能手機(jī)風(fēng)暴對(duì)移動(dòng)通信網(wǎng)絡(luò)的影響及應(yīng)對(duì)策略[J];移動(dòng)通信;2011年21期
7 陳陸穎;叢蓉;楊潔;于華;;高速網(wǎng)絡(luò)環(huán)境下的P2P流媒體業(yè)務(wù)分析和識(shí)別方法(英文)[J];中國(guó)通信;2011年05期
8 郭景贊;王新剛;李德屹;孟照方;;移動(dòng)互聯(lián)網(wǎng)業(yè)務(wù)無(wú)線特征識(shí)別及優(yōu)化方法研究[J];郵電設(shè)計(jì)技術(shù);2012年08期
,本文編號(hào):2060874
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2060874.html