基于支持向量機(jī)的網(wǎng)絡(luò)流量預(yù)測和資源調(diào)度
本文選題:支持向量機(jī) + 核函數(shù) ; 參考:《廣東工業(yè)大學(xué)》2015年碩士論文
【摘要】:隨著計算機(jī)和互聯(lián)網(wǎng)的持續(xù)高速發(fā)展,網(wǎng)絡(luò)在人們生活中扮演的角色也越來越重要,人們再也不能滿足于只簡單上網(wǎng)的需求,人們對上網(wǎng)的要求也越來越高。網(wǎng)絡(luò)擁塞、網(wǎng)絡(luò)故障、網(wǎng)絡(luò)安全等一系列的問題時刻困擾著我們,如何對系統(tǒng)中的網(wǎng)絡(luò)數(shù)據(jù)進(jìn)行測量、收集和預(yù)測已成為網(wǎng)絡(luò)系統(tǒng)運(yùn)行的主要難題之一。據(jù)大量數(shù)據(jù)顯示,網(wǎng)絡(luò)是復(fù)雜的、多方因素影響的,網(wǎng)絡(luò)流量也必然呈現(xiàn)出高度自相似、時變性和非線性等特征,這注定傳統(tǒng)的預(yù)測方法無法做到高的準(zhǔn)確率。支持向量機(jī)是一種機(jī)器學(xué)習(xí)方法,其求解速度快,且泛化能力強(qiáng),故本文用支持向量機(jī)來進(jìn)行預(yù)測。支持向量機(jī)可以根據(jù)現(xiàn)有的有限的樣本信息,在所建立的模型的復(fù)雜性和機(jī)器的學(xué)習(xí)能力間尋求一個平衡點,以得到最好的泛化能力,并創(chuàng)造性的將線性不可分的問題,通過核函數(shù)映射到高維空間,使之線性可分。本文在對網(wǎng)絡(luò)流量準(zhǔn)確預(yù)測后,綜合預(yù)測了CPU使用率和內(nèi)存使用率的情況,為市區(qū)信訪件對接平臺設(shè)計了模糊控制器,該模糊控制器根據(jù)預(yù)測結(jié)果進(jìn)行資源調(diào)度,并在仿真平臺上進(jìn)行了實驗,取得了很好的效果。本文的主要研究內(nèi)容如下:1).研究支持向量機(jī)參數(shù)選擇的問題。參數(shù)的選擇在支持向量機(jī)建模期間有巨大的影響,參數(shù)的好壞直接影響著預(yù)測精度的高低。在研究生學(xué)習(xí)期間,本人關(guān)注了各種新型的算法,并創(chuàng)新性的將布谷鳥搜索算法應(yīng)用于支持向量機(jī)的參數(shù)選擇過程中。實驗對比了現(xiàn)有的算法,如遺傳算法和粒子群算法,布谷鳥搜索算法明顯提高了SVM的效率和結(jié)果準(zhǔn)確率。2).根據(jù)記錄的網(wǎng)絡(luò)帶寬、CPU使用率,內(nèi)存使用率的數(shù)據(jù),通過本文提出的基于布谷鳥搜索算法的支持向量回歸機(jī)(CS-SVR)進(jìn)行預(yù)測,并通過本文設(shè)計的模糊控制器根據(jù)CS-SVR的預(yù)測結(jié)果,對資源進(jìn)行調(diào)度,使得服務(wù)器端的各項資源的利用率最大化,達(dá)到負(fù)載平衡,從而提高服務(wù)質(zhì)量。
[Abstract]:With the continuous rapid development of computers and the Internet, the role of the network in people's lives is becoming more and more important. People can no longer meet the need of simply accessing the Internet, and people's requirements for the Internet are also getting higher and higher. A series of problems, such as network congestion, network failure, network security and so on, haunt us all the time. How to measure, collect and predict the network data in the system has become one of the main problems in the operation of the network system. According to a large number of data, the network is complex and influenced by many factors, and the network traffic must be highly self-similar, time-varying and nonlinear, which is doomed to the traditional prediction method can not achieve high accuracy. Support vector machine (SVM) is a kind of machine learning method, which has fast solving speed and strong generalization ability, so this paper uses support vector machine to predict. Support vector machine (SVM) can find a balance between the complexity of the established model and the learning ability of the machine based on the existing limited sample information in order to obtain the best generalization ability and creatively solve the problem of linear inseparability. The kernel function is mapped to high dimensional space to make it linearly separable. After the accurate prediction of network traffic, the CPU utilization rate and memory utilization rate are forecasted synthetically, and a fuzzy controller is designed for the docking platform of letters and visits in the urban area. The fuzzy controller schedules the resources according to the forecast results. Experiments are carried out on the simulation platform, and good results are obtained. The main contents of this paper are as follows: 1). The parameter selection of support vector machine (SVM) is studied. The selection of parameters has a great influence on the modeling of support vector machines, and the quality of parameters directly affects the accuracy of prediction. During the post-graduate study, I pay attention to various new algorithms, and creatively apply the cuckoo search algorithm to the parameter selection process of support vector machine. Compared with the existing algorithms, such as genetic algorithm and particle swarm optimization algorithm, the cuckoo search algorithm improves the efficiency and accuracy of SVM significantly. According to the recorded data of CPU utilization and memory utilization, this paper proposes a support vector regression machine (CS-SVR) based on cuckoo search algorithm, and uses the fuzzy controller designed in this paper to predict the CS-SVR. The resources are scheduled to maximize the utilization of each resource on the server side to achieve load balance and improve the quality of service.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TP18;TP393.06
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊強(qiáng),吳中福,余平,鐘將;基于正反饋的支持向量機(jī)[J];重慶大學(xué)學(xué)報(自然科學(xué)版);2004年05期
2 孫蕾,周明全,李丙春;一種非平衡分布數(shù)據(jù)的支持向量機(jī)新算法[J];計算機(jī)應(yīng)用;2004年12期
3 黃勇;鄭春穎;宋忠虎;;多類支持向量機(jī)算法綜述[J];計算技術(shù)與自動化;2005年04期
4 楊強(qiáng),吳中福,余萍,鐘將;一種新型支持向量機(jī)[J];重慶大學(xué)學(xué)報(自然科學(xué)版);2005年02期
5 張猛,付麗華,王高峰;模糊臨近支持向量機(jī)[J];計算機(jī)工程與應(yīng)用;2005年05期
6 張浩然;汪曉東;張長江;徐秀玲;;一種新型回歸支持向量機(jī)的學(xué)習(xí)算法[J];測試技術(shù)學(xué)報;2006年02期
7 王曄;黃上騰;;基于間隔區(qū)域樣本數(shù)量的加權(quán)支持向量機(jī)[J];計算機(jī)工程;2006年06期
8 梁新榮;劉智勇;孫德山;毛宗源;;支持向量機(jī)在混沌系統(tǒng)預(yù)測中的應(yīng)用[J];計算機(jī)應(yīng)用研究;2006年05期
9 盧敏;張展羽;馮寶平;賈仁輔;;基于支持向量機(jī)的區(qū)域水安全預(yù)警模型及應(yīng)用[J];計算機(jī)工程;2006年15期
10 張陽;劉永革;景旭;;一種改進(jìn)的線性支持向量機(jī)的特征篩選算法[J];西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版);2006年10期
相關(guān)會議論文 前10條
1 侯澍e,
本文編號:2056161
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2056161.html