社交網(wǎng)絡(luò)中基于信任模型的社區(qū)發(fā)現(xiàn)算法研究
本文選題:社交網(wǎng)絡(luò) + 重疊社區(qū)發(fā)現(xiàn); 參考:《合肥工業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,社交網(wǎng)絡(luò)已逐漸成為了人們?nèi)粘=挥褱贤、個(gè)人生活展示及消息發(fā)布的主要平臺(tái)。社區(qū)發(fā)現(xiàn)是社交網(wǎng)絡(luò)研究中的一個(gè)熱點(diǎn),挖掘社交網(wǎng)絡(luò)中潛在的社區(qū)結(jié)構(gòu)有助于深入理解網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)特點(diǎn),也能為輿情監(jiān)測(cè)、意見(jiàn)領(lǐng)袖發(fā)現(xiàn)和個(gè)性化推薦等諸多方面的研究與應(yīng)用提供有力的支持。但目前隨著社交網(wǎng)絡(luò)規(guī)模的不斷增大,如何從愈發(fā)復(fù)雜的社交網(wǎng)絡(luò)中簡(jiǎn)單高效地挖掘出具有潛在特征的重疊社區(qū)結(jié)構(gòu)成為了一項(xiàng)具有挑戰(zhàn)性的問(wèn)題。同時(shí),社交網(wǎng)絡(luò)中的用戶(hù)之間不僅存在著顯性關(guān)系,還存在好友相似、屬性相似和興趣相似等形式所表現(xiàn)出的隱性關(guān)系。為了更加合理地分析社交網(wǎng)絡(luò)中用戶(hù)之間的關(guān)系特征,可以通過(guò)使用信任來(lái)衡量用戶(hù)間的個(gè)體權(quán)重、關(guān)系強(qiáng)度等關(guān)系屬性,并通過(guò)定義信任的計(jì)算方法與傳遞規(guī)則來(lái)完成社交網(wǎng)絡(luò)中的關(guān)系描述,從而能夠有效提升社交網(wǎng)絡(luò)分析的準(zhǔn)確性因此,為解決已有社區(qū)發(fā)現(xiàn)算法中存在的問(wèn)題,本文首先定義了一種社交網(wǎng)絡(luò)中節(jié)點(diǎn)間信任的計(jì)算方法,通過(guò)使用信任來(lái)描述節(jié)點(diǎn)之間的關(guān)系特征,并在此基礎(chǔ)之上提出了基于節(jié)點(diǎn)間信任的重疊社區(qū)發(fā)現(xiàn)算法,最后通過(guò)對(duì)比實(shí)驗(yàn)完成了算法的驗(yàn)證。具體的研究?jī)?nèi)容如下:1)提出了一種社交網(wǎng)絡(luò)中融合了節(jié)點(diǎn)間關(guān)系強(qiáng)度與相似性的信任計(jì)算方法。在相關(guān)信任計(jì)算研究的基礎(chǔ)之上,分析與選擇社交網(wǎng)絡(luò)中影響節(jié)點(diǎn)間信任的因素之后,針對(duì)由節(jié)點(diǎn)間關(guān)系強(qiáng)度產(chǎn)生的關(guān)系信任和節(jié)點(diǎn)間相似性產(chǎn)生的相似信任,分別給出了對(duì)應(yīng)的計(jì)算方法。社交網(wǎng)絡(luò)環(huán)境中信任的計(jì)算方法是本文后續(xù)研究的重要基礎(chǔ)。2)設(shè)計(jì)了一種社交網(wǎng)絡(luò)中基于節(jié)點(diǎn)間信任的局部重疊社區(qū)發(fā)現(xiàn)算法TLCDA(Trust-Based Local Overlapping Community Detection Algorithm)。TLCDA算法將社交網(wǎng)絡(luò)抽象成為數(shù)據(jù)場(chǎng)后使用信任勢(shì)來(lái)描述局部范圍內(nèi)節(jié)點(diǎn)之間的影響作用,并通過(guò)使用粗糙K-Mediods聚類(lèi)完成重疊社區(qū)發(fā)現(xiàn)。3)制定了實(shí)驗(yàn)方案并完成對(duì)比分析。本文選取了LFR人工基準(zhǔn)網(wǎng)絡(luò)、經(jīng)典真實(shí)網(wǎng)絡(luò)和微博網(wǎng)絡(luò)三種不同類(lèi)型的網(wǎng)絡(luò),給出了社區(qū)發(fā)現(xiàn)的效果評(píng)價(jià)指標(biāo),并通過(guò)與經(jīng)典的社區(qū)發(fā)現(xiàn)算法進(jìn)行對(duì)比完成了TLCDA算法的效果驗(yàn)證。
[Abstract]:With the rapid development of Internet technology, social network has gradually become the main platform for people to make friends and communicate, personal life display and news release. Community discovery is a hot topic in the research of social network. Mining the potential community structure in social network can help to understand the topological characteristics of the network and monitor the public opinion. Research and application of opinion leader discovery and personalized recommendation provide strong support. However, with the increasing scale of social network, how to find the overlapping community structure with potential characteristics from the increasingly complex social network has become a challenging problem. At the same time, there are not only dominant relationships among users in social networks, but also hidden relationships in the form of similar friends, similar attributes and similar interests. In order to analyze the relationship characteristics of users in social network more reasonably, we can use trust to measure the individual weight and relationship strength among users. The relationship description in social network can be completed by defining trust calculation method and transfer rule, which can effectively improve the accuracy of social network analysis. Therefore, in order to solve the problems existing in existing community discovery algorithms, This paper first defines a computing method of trust between nodes in social networks, describes the relationship characteristics between nodes by using trust, and then proposes an overlapping community discovery algorithm based on trust between nodes. Finally, the algorithm is verified by contrast experiment. The main contents of this paper are as follows: (1) A trust computing method which combines the strength and similarity of the relationship between nodes in social networks is proposed. Based on the research of related trust computing, this paper analyzes and selects the factors that affect the trust between nodes in social network, and then analyzes the relationship trust generated by the strength of the relationship between nodes and the similarity between nodes. The corresponding calculation methods are given respectively. Trust computing method in social network environment is an important foundation of the following research in this paper. (2) A local overlapping community discovery algorithm based on trust between nodes in social network is designed. TLCDA Trust-Based Local overlapping Community Detection algorithm. TLCDA algorithm abstracts social network. After becoming a data field, a trust potential is used to describe the effects between nodes in a local scope. By using rough K-Mediods clustering to complete the overlapping community discovery. 3) the experimental scheme was developed and the comparative analysis was completed. In this paper, we select three different types of networks: LFR-artificial benchmark network, classical real network and Weibo network, and give the evaluation index of community discovery effect. The effect of TLCDA algorithm is verified by comparing with the classical community discovery algorithm.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP301.6;TP393.09
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;基于位置的手機(jī)社交網(wǎng)絡(luò)“貝多”正式發(fā)布[J];中國(guó)新通信;2008年06期
2 曹增輝;;社交網(wǎng)絡(luò)更偏向于用戶(hù)工具[J];信息網(wǎng)絡(luò);2009年11期
3 ;美國(guó):印刷企業(yè)青睞社交網(wǎng)絡(luò)營(yíng)銷(xiāo)新方式[J];中國(guó)包裝工業(yè);2010年Z1期
4 李智惠;柳承燁;;韓國(guó)移動(dòng)社交網(wǎng)絡(luò)服務(wù)的類(lèi)型分析與促進(jìn)方案[J];現(xiàn)代傳播(中國(guó)傳媒大學(xué)學(xué)報(bào));2010年08期
5 賈富;;改變一切的社交網(wǎng)絡(luò)[J];互聯(lián)網(wǎng)天地;2011年04期
6 譚拯;;社交網(wǎng)絡(luò):連接與發(fā)現(xiàn)[J];廣東通信技術(shù);2011年07期
7 陳一舟;;社交網(wǎng)絡(luò)的發(fā)展趨勢(shì)[J];傳媒;2011年12期
8 殷樂(lè);;全球社交網(wǎng)絡(luò)新態(tài)勢(shì)及文化影響[J];新聞與寫(xiě)作;2012年01期
9 許麗;;社交網(wǎng)絡(luò):孤獨(dú)年代的集體狂歡[J];上海信息化;2012年09期
10 李玲麗;吳新年;;科研社交網(wǎng)絡(luò)的發(fā)展現(xiàn)狀及趨勢(shì)分析[J];圖書(shū)館學(xué)研究;2013年01期
相關(guān)會(huì)議論文 前10條
1 趙云龍;李艷兵;;社交網(wǎng)絡(luò)用戶(hù)的人格預(yù)測(cè)與關(guān)系強(qiáng)度研究[A];第七屆(2012)中國(guó)管理學(xué)年會(huì)商務(wù)智能分會(huì)場(chǎng)論文集(選編)[C];2012年
2 宮廣宇;李開(kāi)軍;;對(duì)社交網(wǎng)絡(luò)中信息傳播的分析和思考——以人人網(wǎng)為例[A];首屆華中地區(qū)新聞與傳播學(xué)科研究生學(xué)術(shù)論壇獲獎(jiǎng)?wù)撐腫C];2010年
3 楊子鵬;喬麗娟;王夢(mèng)思;楊雪迎;孟子冰;張禹;;社交網(wǎng)絡(luò)與大學(xué)生焦慮緩解[A];心理學(xué)與創(chuàng)新能力提升——第十六屆全國(guó)心理學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年
4 畢雪梅;;體育虛擬社區(qū)中的體育社交網(wǎng)絡(luò)解析[A];第九屆全國(guó)體育科學(xué)大會(huì)論文摘要匯編(4)[C];2011年
5 杜p,
本文編號(hào):2013075
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2013075.html