基于LXC的PaaS云中支持QoS的自適應(yīng)部署機制研究
本文選題:PaaS + LXC虛擬化��; 參考:《青島大學》2017年碩士論文
【摘要】:PaaS(Platform as a Service)云平臺是一個由硬件基礎(chǔ)設(shè)施與軟件系統(tǒng)構(gòu)成的、分布式的計算機集群系統(tǒng)。用戶可以使用PaaS云平臺上配置的資源開發(fā)和部署應(yīng)用服務(wù)程序,并管理應(yīng)用程序的執(zhí)行。LXC(Linux Container)容器技術(shù)是操作系統(tǒng)級別的輕量級虛擬化技術(shù),它為構(gòu)建PaaS云平臺帶來了新契機。由于PaaS云平臺是一個開放的、極其復雜的分布式運行環(huán)境,因此在平臺上運行服務(wù)的執(zhí)行環(huán)境與單機的執(zhí)行環(huán)境有很大的不同。主要體現(xiàn)在對應(yīng)用服務(wù)的分析、部署、監(jiān)控等平臺管理的運維方面。因此,如果還保持單機上部署應(yīng)用服務(wù)一樣的手工操作,不僅費時而且容易出錯,因為在云平臺上部署一個服務(wù)需要經(jīng)過一長串復雜的配置操作,即便是有經(jīng)驗的開發(fā)者也會在修改大量配置文件時出現(xiàn)疏漏或重復,如果配置沖突將導致服務(wù)無法正常運行。盡管許多平臺也簡化了配置過程,但仍然需要服務(wù)開發(fā)者或PaaS平臺提供者進行手工配置操作。針對上述問題,本文提出使用LXC容器構(gòu)建PaaS云平臺,以降低平臺開銷,提高平臺的整體性能;并在該PaaS云平臺上設(shè)計了一種支持QoS的自適應(yīng)部署機制模型,該模型根據(jù)云平臺提供商和用戶之間簽署的服務(wù)等級協(xié)議SLA為用戶選擇滿足其服務(wù)質(zhì)量QoS要求的部署節(jié)點,同時基于負載均衡策略進行應(yīng)用服務(wù)的部署。具體工作如下:首先,在分析研究LXC的Namespaces和Cgroups技術(shù)的基礎(chǔ)上,提出一種采用LXC虛擬化技術(shù)構(gòu)建一個簡易的輕量級PaaS云平臺的方法,以達到隔離不同租戶和共享云平臺軟硬件資源的目的;并用相關(guān)實驗證明該方法相比傳統(tǒng)虛擬機方法更具性能優(yōu)勢,更適合于提供科學計算服務(wù)的PaaS云平臺。其次,設(shè)計PaaS云平臺服務(wù)部署節(jié)點選擇優(yōu)化算法,以實現(xiàn)對應(yīng)用服務(wù)的部署和運行。在分析影響平臺節(jié)點選擇的QoS參數(shù)和隨機負載均衡策略的基礎(chǔ)上建立目標函數(shù)。以節(jié)點的當前負載閾值和服務(wù)部署請求的QoS屬性值作為約束條件,使用混合整數(shù)線性規(guī)劃建模并求解。該算法可自動實現(xiàn)應(yīng)用服務(wù)的部署任務(wù)。最后,在服務(wù)器集群上構(gòu)建了基于LXC的PaaS云平臺,并在該平臺上設(shè)計實現(xiàn)了支持QoS的自適應(yīng)部署機制模型。并通過系統(tǒng)測試驗證平臺及所做研究工作的有效性和可行性。最后對本文工作進行總結(jié)和展望。
[Abstract]:PaaS(Platform as a Service) cloud platform is a distributed computer cluster system composed of hardware infrastructure and software system. User can use the resources configured on PaaS cloud platform to develop and deploy application service program, and manage the execution of application program. LXCU Linux container technology is a lightweight virtualization technology at operating system level, which brings a new opportunity to build PaaS cloud platform. Because the PaaS cloud platform is an open and extremely complex distributed running environment, the execution environment of running services on the platform is very different from that of the single machine. Mainly embodies in the application service analysis, the deployment, the monitoring and so on platform management operation and maintenance aspect. Therefore, if you keep the same manual operation as an application service deployed on a single machine, it is not only time-consuming but also error-prone because deploying a service on a cloud platform requires a long and complex set of configuration operations. Even experienced developers may omit or duplicate changes to a large number of configuration files, which will cause the service to fail in case of configuration conflicts. Although many platforms also simplify the configuration process, manual configuration is still required by service developers or PaaS platform providers. To solve the above problems, this paper proposes to use LXC container to build PaaS cloud platform to reduce the overhead of the platform and improve the overall performance of the platform, and design an adaptive deployment mechanism model supporting QoS on the PaaS cloud platform. According to the service level protocol (SLA) signed between the cloud platform provider and the user, the model selects the deployment nodes that meet the requirements of the quality of service (QoS), and deploys the application service based on the load balancing strategy. The main work is as follows: firstly, on the basis of analyzing the Namespaces and Cgroups technology of LXC, a simple method of constructing a lightweight PaaS cloud platform using LXC virtualization technology is proposed. In order to isolate different tenants and share the hardware and software resources of cloud platform, the experiments show that this method has more performance advantages than traditional virtual machine method, and is more suitable for PaaS cloud platform which provides scientific computing services. Secondly, the PaaS cloud platform service deployment node selection optimization algorithm is designed to implement the deployment and operation of application services. The objective function is established based on the analysis of the QoS parameters and random load balancing strategies that affect the platform node selection. Using the current load threshold of the node and the QoS attribute value of the service deployment request as the constraint conditions, the mixed integer linear programming is used to model and solve the problem. The algorithm can automatically implement the deployment of application services. Finally, the PaaS cloud platform based on LXC is constructed on the server cluster, and an adaptive deployment mechanism model supporting QoS is designed and implemented on the platform. The validity and feasibility of the platform and the research work are verified by the system test. Finally, the work of this paper is summarized and prospected.
【學位授予單位】:青島大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP393.09
【參考文獻】
相關(guān)期刊論文 前10條
1 武志學;;云計算虛擬化技術(shù)的發(fā)展與趨勢[J];計算機應(yīng)用;2017年04期
2 李志剛;孫若寒;李雅潔;;云智能運維自動化部署關(guān)鍵技術(shù)研究[J];科技經(jīng)濟導刊;2016年33期
3 耿凱峰;王玉磊;;基于云計算虛擬化技術(shù)的高校數(shù)據(jù)中心設(shè)計[J];自動化技術(shù)與應(yīng)用;2016年10期
4 胡圣;;云計算虛擬化技術(shù)在電信領(lǐng)域的應(yīng)用研究[J];數(shù)字技術(shù)與應(yīng)用;2016年09期
5 李艷霞;袁芳;劉乃嘉;邵正隆;;應(yīng)用自動化部署平臺的研究與實現(xiàn)[J];實驗技術(shù)與管理;2016年08期
6 王璞;;解析Docker如何催生新一代PaaS[J];軟件和集成電路;2016年07期
7 皮篩成;游輝敏;;基于控制流分析的軟件源代碼靜態(tài)測試技術(shù)的研究[J];科學大眾(科學教育);2016年06期
8 童志偉;;PaaS私有云平臺及其負載自適應(yīng)算法[J];軟件導刊;2016年06期
9 田密;;基于云計算機的虛擬化技術(shù)應(yīng)用研究[J];物聯(lián)網(wǎng)技術(shù);2016年04期
10 陳阿妹;陳佳麗;陳斌仙;;基于JMeter的Web性能測試的研究[J];九江學院學報(自然科學版);2016年01期
相關(guān)博士學位論文 前1條
1 李曉娜;面向SaaS應(yīng)用的多租戶數(shù)據(jù)放置機制研究[D];山東大學;2015年
相關(guān)碩士學位論文 前5條
1 王飛;基于Docker的研發(fā)部署管理平臺的設(shè)計與實現(xiàn)[D];北京交通大學;2015年
2 鄭健;云端應(yīng)用的自動化高可用部署技術(shù)研究[D];南京大學;2015年
3 禹超;Linux Containers熱遷移機制研究[D];電子科技大學;2015年
4 李莎;面向PaaS平臺的應(yīng)用優(yōu)化部署研究[D];浙江大學;2015年
5 陳曉;基于LinuxContainer的Android移動終端虛擬化[D];華南理工大學;2013年
,本文編號:1968239
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/1968239.html