多域路徑的部署與優(yōu)化調(diào)整
發(fā)布時間:2018-05-11 01:02
本文選題:軟件定義網(wǎng)絡(luò) + 多域網(wǎng)絡(luò)。 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:軟件定義網(wǎng)絡(luò)(Software Defined Networking,SDN)是近年來提出的一種新的網(wǎng)絡(luò)范型,它通過采用控制/轉(zhuǎn)發(fā)分離架構(gòu),將傳統(tǒng)網(wǎng)絡(luò)設(shè)備的數(shù)據(jù)轉(zhuǎn)發(fā)功能和路由控制功能相分離,交換設(shè)備可以更關(guān)注于數(shù)據(jù)轉(zhuǎn)發(fā),提高轉(zhuǎn)發(fā)效率。集中式的控制器通過標(biāo)準(zhǔn)的南向接口對連接的網(wǎng)絡(luò)設(shè)備進(jìn)行管理和配置,它抽象了底層網(wǎng)絡(luò)設(shè)備,提供給上層應(yīng)用一個一致的管理視圖和編程接口,實現(xiàn)網(wǎng)絡(luò)可編程性。出于地域、歸屬權(quán)不同以及便于維護(hù)管理等原因,互聯(lián)網(wǎng)被劃分為不同的自治系統(tǒng),自治系統(tǒng)間通過BGP協(xié)議交互網(wǎng)絡(luò)可達(dá)信息。為提高網(wǎng)絡(luò)的服務(wù)質(zhì)量,引入了流量工程。但BGP無法滿足域間流量工程的需求,集中控制思想開始展現(xiàn)出它的優(yōu)勢。因此本文考慮將SDN用于域間路由,每個區(qū)域擁有自己的控制器。每個域內(nèi)控制器可以學(xué)習(xí)到本區(qū)域的網(wǎng)絡(luò)視圖,處理域內(nèi)業(yè)務(wù)。但對于跨域業(yè)務(wù),需要每個控制器都有一個全局網(wǎng)絡(luò)視圖才能做出決策,這就需要控制器間協(xié)同交互。本文對多域控制器間的交互協(xié)同進(jìn)行了設(shè)計實現(xiàn),主要包含的工作如下:(1)設(shè)計了一種輕量級的多域控制器間東西向水平對等架構(gòu),通過自擬的水平交互協(xié)議進(jìn)行消息的傳遞和擴(kuò)散,控制器基于此協(xié)議完成了全局網(wǎng)絡(luò)狀態(tài)的同步和一致。(2)系統(tǒng)實現(xiàn)了控制器動態(tài)加入,利用LLDP協(xié)議發(fā)現(xiàn)域間鏈路,由此域間鏈路傳輸控制器的相關(guān)信息,然后通過Netty實現(xiàn)相鄰控制器間的對等互連。控制器間傳輸可達(dá)區(qū)域路徑信息,根據(jù)收到的信息更新內(nèi)存數(shù)據(jù)。當(dāng)業(yè)務(wù)到來時,每個區(qū)域根據(jù)最短區(qū)域路徑策略選取下一跳區(qū)域出口,域內(nèi)仍然按照最短路方式路由,按照這樣的策略部署跨域業(yè)務(wù)的路徑。(3)每個控制器根據(jù)自己學(xué)習(xí)到的本區(qū)域底層網(wǎng)絡(luò)拓?fù)涑橄蟪鲆粋虛擬網(wǎng)絡(luò)視圖,它是一個該區(qū)域邊界交換機(jī)全互連的虛擬拓?fù)?統(tǒng)計該虛擬拓?fù)渲墟溌返膸、時延、丟包率等信息。每個控制器通過水平交互協(xié)議將統(tǒng)計信息通過鄰域擴(kuò)散到整個網(wǎng)絡(luò),最終達(dá)到全局網(wǎng)絡(luò)信息的一致性。(4)發(fā)起業(yè)務(wù)的源區(qū)域控制器根據(jù)全局網(wǎng)絡(luò)信息選取出一條適合此業(yè)務(wù)的優(yōu)化路徑,向路徑上的區(qū)域控制器正向傳遞此路徑信息,從業(yè)務(wù)目的區(qū)域的控制器開始下發(fā)流表項,并且反向路徑回傳成功消息進(jìn)行下一區(qū)域流表項的下發(fā),最終完成到優(yōu)化路徑的流量遷移。
[Abstract]:Software Defined networking (SDN) is a new network paradigm proposed in recent years. It separates the data forwarding function of traditional network devices from the routing control function by adopting a control / forwarding separation architecture. Switching devices can pay more attention to data forwarding and improve forwarding efficiency. The centralized controller manages and configures the connected network devices through the standard southern interface. It abstracts the underlying network equipment and provides a consistent management view and programming interface to the upper layer to realize network programmability. For the reasons of different regions, different ownership rights and convenient maintenance and management, the Internet is divided into different autonomous systems, which can communicate information through BGP protocol. In order to improve the quality of service (QoS) of the network, traffic engineering is introduced. However, BGP can not meet the needs of inter-domain traffic engineering, and the centralized control idea begins to show its advantages. Therefore, this paper considers using SDN for inter-domain routing, each region has its own controller. Each domain controller can learn the network view of the region and handle the business within the domain. However, for cross-domain services, each controller needs a global network view to make a decision, which requires collaborative interaction between controllers. In this paper, the interaction and cooperation among multi-domain controllers are designed and implemented. The main work is as follows: 1) designed a lightweight east-west horizontal peer-to-peer architecture between multi-domain controllers. Based on this protocol, the controller realizes the synchronization and consistency of the global network state, and realizes the dynamic join of the controller. The LLDP protocol is used to discover the inter-domain link. This inter-domain link transmits the relevant information of the controller, and then realizes the peer-to-peer interconnection between the adjacent controllers through Netty. The reachable area path information is transmitted between controllers and the memory data is updated according to the received information. When the service arrives, each region selects the next hop area exit according to the shortest region path strategy, and the region is still routed according to the shortest path mode. Each controller abstracts a virtual network view based on the underlying network topology of the region, which is a fully interconnected virtual topology of the regional boundary switch, according to this strategy. The link bandwidth, delay, packet loss rate and other information in the virtual topology are analyzed. Each controller diffuses statistics through the neighborhood over the entire network through horizontal interaction protocols. Finally reach the consistency of global network information. 4) the source domain controller that initiates the service selects an optimized path according to the global network information and transmits the path information forward to the area controller on the path. Starting from the controller of the business destination region, the flow table items are sent down, and the success message is sent back to the next area flow table item, and the traffic migration to the optimized path is finally completed.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP393.0
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 周環(huán);劉慧;;基于Floodlight的SDN控制器研究[J];計算機(jī)工程與應(yīng)用;2016年24期
2 左青云;陳鳴;趙廣松;邢長友;張國敏;蔣培成;;基于OpenFlow的SDN技術(shù)研究[J];軟件學(xué)報;2013年05期
相關(guān)碩士學(xué)位論文 前3條
1 譚凌鏘;面向IP骨干網(wǎng)的SDN應(yīng)用研究[D];電子科技大學(xué);2016年
2 侯浩祥;軟件定義網(wǎng)絡(luò)中分布式控制平臺的研究與應(yīng)用[D];北京郵電大學(xué);2015年
3 孔祥欣;軟件定義網(wǎng)絡(luò)分布式控制平臺的研究與實現(xiàn)[D];清華大學(xué);2013年
,本文編號:1871701
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/1871701.html
最近更新
教材專著