可拓關(guān)聯(lián)規(guī)則在告警相關(guān)性分析中的研究與應(yīng)用
本文選題:數(shù)據(jù)挖掘 + 關(guān)聯(lián)規(guī)則; 參考:《沈陽理工大學(xué)》2017年碩士論文
【摘要】:網(wǎng)絡(luò)縮短了世界的距離,作用日益重要,網(wǎng)絡(luò)故障的影響也越來越嚴(yán)重。傳統(tǒng)的網(wǎng)絡(luò)故障診斷方法主要依靠工作人員在長期處理故障的過程中所積累的經(jīng)驗(yàn),這種方法效率較低且培養(yǎng)一個(gè)有經(jīng)驗(yàn)的技術(shù)人員花費(fèi)的成本較高、培養(yǎng)周期長。隨著數(shù)據(jù)挖掘技術(shù)的逐漸成熟及在社會生活中的成功應(yīng)用,將其應(yīng)用于網(wǎng)絡(luò)故障告警相關(guān)性分析也成為研究的熱點(diǎn)。分析故障告警之間相互關(guān)聯(lián)的規(guī)則并應(yīng)用于網(wǎng)絡(luò)故障定位,能夠提高故障定位的效率,具有很高的實(shí)際應(yīng)用價(jià)值。本課題以數(shù)據(jù)挖掘技術(shù)和可拓學(xué)知識為基礎(chǔ),以通信網(wǎng)絡(luò)故障告警相關(guān)性分析及故障點(diǎn)定位為目的,完成可拓關(guān)聯(lián)規(guī)則應(yīng)用于告警相關(guān)性分析的理論算法研究,并通過合成數(shù)據(jù)集,運(yùn)用C#語言進(jìn)行編程做仿真實(shí)驗(yàn),通過Matlab軟件作圖,以圖形化的形式進(jìn)行數(shù)據(jù)分析,驗(yàn)證算法的合理性。首先,詳細(xì)介紹基于Apriori算法的網(wǎng)絡(luò)故障告警相關(guān)性分析實(shí)例,分析此算法及其改進(jìn)算法在告警相關(guān)性分析中存在的瓶頸。然后,在此基礎(chǔ)上根據(jù)網(wǎng)絡(luò)故障告警數(shù)據(jù)的特點(diǎn)提出本課題的算法。根據(jù)可拓學(xué)的基元理論以及告警屬性的特征,采用可拓物元模型對告警信息中的關(guān)鍵屬性進(jìn)行形式化表達(dá),使其適用于數(shù)據(jù)挖掘算法并且從根源上減少數(shù)據(jù)量;在添加水平權(quán)值的基礎(chǔ)上,根據(jù)告警信息的時(shí)間特性,添加垂直權(quán)值,這種混合加權(quán)算法可以減少冗余規(guī)則的產(chǎn)生,提高故障診斷的效率;在設(shè)置水平權(quán)重系數(shù)的過程中為減少主觀因素的影響,根據(jù)告警實(shí)例屬性的特征,考慮各屬性值對水平權(quán)值的客觀作用,運(yùn)用可拓關(guān)聯(lián)函數(shù)的方法計(jì)算告警之間的相似度并確定權(quán)重值。為減少對告警實(shí)例庫的掃描次數(shù),在關(guān)聯(lián)規(guī)則挖掘過程中,采用集合的方式存儲項(xiàng)集,能夠有效降低時(shí)間復(fù)雜度。通過仿真實(shí)驗(yàn),驗(yàn)證算法的合理性。最后,分析網(wǎng)絡(luò)故障實(shí)時(shí)診斷的必要性及研究意義。根據(jù)可拓關(guān)聯(lián)規(guī)則的特點(diǎn),結(jié)合可拓距與可拓變換理論提出新發(fā)告警與可拓關(guān)聯(lián)規(guī)則的匹配方法。
[Abstract]:Network shortens the distance of the world, plays an increasingly important role, and the impact of network failures is becoming more and more serious. The traditional network fault diagnosis method mainly relies on the experience accumulated by the staff during the long period of dealing with the fault. The efficiency of this method is low and the cost of training an experienced technician is high and the training period is long. With the maturity of data mining technology and its successful application in social life, the application of data mining technology to network fault alarm correlation analysis has become a hot topic. It can improve the efficiency of fault location by analyzing the correlation rules of fault alarm and applying it to network fault location, which has high practical application value. Based on the technology of data mining and extension knowledge, and aiming at the correlation analysis of fault alarm and the location of fault point in communication network, the research on the theoretical algorithm of applying extension association rules to alarm correlation analysis is completed in this paper. The simulation experiment is carried out by using C # language, and the data is analyzed graphically by Matlab software, and the rationality of the algorithm is verified by synthesizing the data set and using C # language to do the simulation experiment. Firstly, an example of network fault alarm correlation analysis based on Apriori algorithm is introduced in detail, and the bottleneck of this algorithm and its improved algorithm in alarm correlation analysis is analyzed. Then, according to the characteristics of network fault alarm data, the algorithm of this topic is proposed. According to the basic theory of extenics and the characteristics of alarm attributes, the key attributes in alarm information are formally expressed by extension matter-element model, which is suitable for data mining algorithms and reduces the data volume. On the basis of adding horizontal weights and adding vertical weights according to the time characteristics of alarm information, this hybrid weighting algorithm can reduce the generation of redundant rules and improve the efficiency of fault diagnosis. In order to reduce the influence of subjective factors in setting the horizontal weight coefficient, the objective effect of each attribute value on the level weight value is considered according to the characteristics of alarm instance attribute. The method of extension correlation function is used to calculate the similarity between alarms and determine the weight value. In order to reduce the number of scans on the alarm case library, in the process of mining association rules, the item set can be stored in the form of set, which can effectively reduce the time complexity. The rationality of the algorithm is verified by simulation experiments. Finally, the necessity and significance of real-time network fault diagnosis are analyzed. According to the characteristics of extension association rules, combined with extension distance and extension transformation theory, the matching method of new alarm and extension association rules is proposed.
【學(xué)位授予單位】:沈陽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP311.13;TP393.06
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李文喜;;監(jiān)管平臺統(tǒng)一運(yùn)維管理系統(tǒng)告警平臺設(shè)計(jì)[J];廣播與電視技術(shù);2015年S1期
2 趙志剛;萬軍;王芳;;一種基于向量的概率加權(quán)關(guān)聯(lián)規(guī)則挖掘算法[J];計(jì)算機(jī)工程與科學(xué);2014年02期
3 卞玉濤;李志華;;基于專家系統(tǒng)的故障診斷方法的研究與改進(jìn)[J];電子設(shè)計(jì)工程;2013年16期
4 胡運(yùn)祿;于津;;加權(quán)模糊關(guān)聯(lián)規(guī)則挖掘研究[J];現(xiàn)代計(jì)算機(jī);2013年16期
5 冷曉杰;李興明;;模糊理論在網(wǎng)絡(luò)故障實(shí)時(shí)診斷中的應(yīng)用[J];計(jì)算機(jī)技術(shù)與發(fā)展;2013年06期
6 苗苗苗;王玉英;;基于矩陣壓縮的Apriori算法改進(jìn)的研究[J];計(jì)算機(jī)工程與應(yīng)用;2013年01期
7 汪明;;數(shù)據(jù)挖掘綜述[J];河北軟件職業(yè)技術(shù)學(xué)院學(xué)報(bào);2012年01期
8 郭洪波;李煒;王晶;;基于數(shù)據(jù)挖掘的增值業(yè)務(wù)網(wǎng)管告警關(guān)聯(lián)分析模型[J];電信工程技術(shù)與標(biāo)準(zhǔn)化;2011年11期
9 陳文偉;;挖掘變化知識的可拓?cái)?shù)據(jù)挖掘研究[J];中國工程科學(xué);2006年11期
10 李立希,李鏵汶,楊春燕;可拓學(xué)在數(shù)據(jù)挖掘中的應(yīng)用初探[J];中國工程科學(xué);2004年07期
相關(guān)博士學(xué)位論文 前2條
1 孫明;可拓城市生態(tài)規(guī)劃理論與方法研究[D];哈爾濱工業(yè)大學(xué);2010年
2 蘇楠;基于可拓邏輯的產(chǎn)品族配置設(shè)計(jì)方法[D];浙江工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 王唯;深孔鉆削加工切削參數(shù)專家系統(tǒng)設(shè)計(jì)與研究[D];中北大學(xué);2016年
2 韓宏瑩;并行數(shù)據(jù)挖掘技術(shù)在電信網(wǎng)管告警中的應(yīng)用研究[D];長春工業(yè)大學(xué);2016年
3 張海健;基于可拓理論的風(fēng)電項(xiàng)目質(zhì)量綜合評價(jià)研究[D];西安建筑科技大學(xué);2015年
4 郭忠俊;基于數(shù)據(jù)挖掘技術(shù)的礦井提升機(jī)故障診斷研究[D];中國礦業(yè)大學(xué);2015年
5 劉珍;多域分布式網(wǎng)絡(luò)的告警模糊關(guān)聯(lián)規(guī)則挖掘[D];電子科技大學(xué);2015年
6 謝萬富;基于模糊關(guān)聯(lián)規(guī)則挖掘的多層網(wǎng)絡(luò)告警相關(guān)性分析[D];電子科技大學(xué);2015年
7 李晨陽;一款眼肌醫(yī)療專家系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京交通大學(xué);2015年
8 張楠;數(shù)據(jù)挖掘在入侵檢測中的應(yīng)用研究[D];電子科技大學(xué);2015年
9 訾超;基于故障樹的飛機(jī)故障診斷專家系統(tǒng)技術(shù)研究[D];鄭州大學(xué);2015年
10 楊磊;基于網(wǎng)絡(luò)中用戶行為的數(shù)據(jù)挖掘系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];河北科技大學(xué);2014年
,本文編號:1861787
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/1861787.html