基于詞典的財經(jīng)微博信息的情感態(tài)度挖掘
發(fā)布時間:2018-04-05 08:39
本文選題:微博 切入點:情感分類 出處:《浙江師范大學(xué)》2014年碩士論文
【摘要】:近年來,隨著中國經(jīng)濟的快速發(fā)展,中國的股票市場發(fā)展也呈現(xiàn)迅猛之勢。中國股市已擁有2467家上市公司,滬深股市總市值23.5萬億,股民數(shù)量已達(dá)到1.6億,中國股市已經(jīng)成為全球市值的第三大市場。對股民而言,互聯(lián)網(wǎng)財經(jīng)類消息與他們的利益息息相關(guān)。 微博作為一種新型的社交工具,由于其簡短寫作,便捷發(fā)布,實時交互的特點深受大眾歡迎,微博已成為國內(nèi)第二大網(wǎng)絡(luò)社交媒介,也是第二大輿情源頭。面向財經(jīng)類的微博信息分析,關(guān)注公眾對財經(jīng)市場的反應(yīng)——情感,可以為市場預(yù)測提供參考,為財經(jīng)行業(yè)從業(yè)人員和投資者服務(wù)。因此,以財經(jīng)領(lǐng)域作為研究實例,分析微博輿情有現(xiàn)實意義和應(yīng)用價值。 在針對財經(jīng)微博的情感態(tài)度分析研究中,構(gòu)建了一個完整的分類模型,主要從規(guī)范化、分類、命名實體識別、情感分析、趨勢預(yù)測等方面開展研究。但是本文將重心放在情感分析上,情感傾向分類也被稱為觀點挖掘(Opinion Mining)或者情感極性分類,可以理解為用戶對某客體表達(dá)自身觀點所持的態(tài)度是支持、反對、中立,也就是常說的正面情感、負(fù)面情感、中性情感。在論文的具體實施過程中,研究的主要內(nèi)容包括以下幾部分: (1)研究了公司組織機構(gòu)名稱全稱及簡稱的語法構(gòu)成、語義特點及組織規(guī)律,并結(jié)合金融領(lǐng)域特有的情感詞,使用情感傾向點互信息算法(SO-PMI)構(gòu)建了金融領(lǐng)域詞典。 (2)分析研究中文微博的特點,在結(jié)合網(wǎng)絡(luò)語言及金融語言特點的基礎(chǔ)上,構(gòu)建了網(wǎng)絡(luò)用語詞典和否定詞、程度副詞及表情符詞典,對深入研究情感態(tài)度挖掘具有重要幫助。 (3)提出了情感加權(quán)計算方法,將構(gòu)建的各類詞典應(yīng)用到情感分類之中,實現(xiàn)情感分類值的量化計算。 最后通過新浪API獲取一段時間內(nèi)含有公司名稱的財經(jīng)微博,在經(jīng)過預(yù)處理、分詞和特征選擇之后,用詞典的情感分類方法對其進行分類。實驗驗證了金融領(lǐng)域詞典、網(wǎng)絡(luò)詞典、和表情詞典的重要性,并將各種詞典都完備下的實驗數(shù)據(jù)和實際股市走向進行對比,說明實驗數(shù)據(jù)在實際生活中具有現(xiàn)實意義,通過進一步研究可運用于股票投資。
[Abstract]:In recent years, with the rapid development of China's economy, China's stock market is also showing a rapid trend.China's stock market has 2467 listed companies, Shanghai and Shenzhen stock market market value 23.5 trillion, the number of shareholders has reached 160 million, the Chinese stock market has become the world's third-largest market market value.For investors, Internet financial news and their interests are closely linked.Weibo as a new type of social tool, because of its short writing, convenient release, real-time interaction characteristics of popular welcome, Weibo has become the second largest social media in China, but also the second source of public opinion.Weibo's information analysis, focusing on the public's reaction to the financial market, can provide a reference for market forecasting and serve as a service for practitioners and investors in finance and economics.Therefore, take the finance and economics domain as the research example, analysis Weibo public opinion has the realistic significance and the application value.In the study of financial Weibo's affective attitude analysis, a complete classification model is constructed, mainly from standardization, classification, named entity identification, emotional analysis, trend prediction and so on.However, this paper focuses on emotional analysis, which is also called opinion mining or emotional polarity classification, which can be understood as support, opposition and neutrality of the user's attitude towards an object expressing its own views.That is to say, positive emotion, negative emotion, neutral emotion.In the specific implementation of the paper, the main content of the study includes the following parts:(1) this paper studies the grammatical structure, semantic characteristics and organization rules of the full name and abbreviation of company organization, and constructs the financial domain dictionary by using the affective point mutual information algorithm (SO-PMI), which is a special affective word in the financial field.2) analyzing and studying the characteristics of Chinese Weibo, on the basis of combining the characteristics of network language and financial language, this paper constructs a dictionary of network terms, negative words, adverbs of degree and emoji, which is of great help to the further study of emotional attitude mining.(3) an affective weighted calculation method is put forward, and the constructed dictionaries are applied to emotional classification to realize the quantification calculation of emotional classification value.Finally, the financial and economic Weibo with company name was obtained by Sina API for a period of time. After preprocessing, participle and feature selection, it was classified by the emotion classification method of dictionary.The experiment verifies the importance of financial field dictionary, network dictionary and expression dictionary, and compares the experimental data with the trend of real stock market, which shows that the experimental data have practical significance in real life.It can be applied to stock investment through further research.
【學(xué)位授予單位】:浙江師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP391.1;TP393.092
【參考文獻】
相關(guān)期刊論文 前7條
1 章劍鋒;張奇;吳立德;黃萱菁;;中文觀點挖掘中的主觀性關(guān)系抽取[J];中文信息學(xué)報;2008年02期
2 聶恩倫;陳黎;王亞強;秦湘清;金宇;于中華;;基于K近鄰的新話題熱度預(yù)測算法[J];計算機科學(xué);2012年S1期
3 王文遠(yuǎn);王大玲;馮時;李任斐;王琳;;一種面向情感分析的微博表情情感詞典構(gòu)建及應(yīng)用[J];計算機與數(shù)字工程;2012年11期
4 張珊;于留寶;胡長軍;;基于表情圖片與情感詞的中文微博情感分析[J];計算機科學(xué);2012年S3期
5 楊斌;路游;;基于統(tǒng)計學(xué)習(xí)理論的支持向量機的分類方法[J];計算機技術(shù)與發(fā)展;2006年11期
6 葉強;張紫瓊;羅振雄;;面向互聯(lián)網(wǎng)評論情感分析的中文主觀性自動判別方法研究[J];信息系統(tǒng)學(xué)報;2007年01期
7 李俊;陳黎;王亞強;秦湘清;于中華;;面向電子商務(wù)網(wǎng)站的產(chǎn)品屬性提取算法[J];小型微型計算機系統(tǒng);2013年11期
,本文編號:1714007
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/1714007.html
最近更新
教材專著