流量異常檢測中的直覺模糊推理方法
發(fā)布時間:2018-03-22 02:37
本文選題:網(wǎng)絡(luò) 切入點:信息安全 出處:《電子與信息學(xué)報》2015年09期 論文類型:期刊論文
【摘要】:針對網(wǎng)絡(luò)流量特征屬性不確定性和模糊性的特點,將直覺模糊推理理論引入異常檢測領(lǐng)域,該文提出一種基于包含度的直覺模糊推理異常檢測方法。首先設(shè)計異常檢測中特征屬性的隸屬度與非隸屬度函數(shù),其次,給出基于包含度的強相似度計算方法并生成推理規(guī)則庫,再次給出多維多重式直覺模糊推理規(guī)則,最后建立異常檢測中的直覺模糊推理方法。通過對異常檢測標準數(shù)據(jù)集KDD99的實驗,驗證該方法的有效性,與常見經(jīng)典異常檢測方法對比,該方法具有更良好的檢測效果。
[Abstract]:In view of the uncertainty and fuzziness of network traffic characteristics, the intuitionistic fuzzy reasoning theory is introduced into the field of anomaly detection. In this paper, an intuitionistic fuzzy reasoning anomaly detection method based on inclusion degree is proposed. Firstly, the membership and non-membership functions of feature attributes in anomaly detection are designed. The strong similarity calculation method based on inclusion degree is presented and the inference rule base is generated. The multi-dimensional and multi-fold intuitionistic fuzzy reasoning rules are given again. Finally, the intuitionistic fuzzy reasoning method in anomaly detection is established. The effectiveness of this method is verified by the experiment of KDD99, the standard data set of anomaly detection. Compared with the classical anomaly detection method, this method has better detection effect.
【作者單位】: 空軍工程大學(xué)防空反導(dǎo)學(xué)院;
【分類號】:TP393.06
,
本文編號:1646723
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/1646723.html
最近更新
教材專著