具有時間感知的加權網絡鏈路預測研究
發(fā)布時間:2018-02-14 22:40
本文關鍵詞: 社會網絡 鏈路預測 加權網絡 時間感知 出處:《中南大學》2014年碩士論文 論文類型:學位論文
【摘要】:鏈路預測是社會網絡研究中的一個重要分支,其主要任務是通過當前網絡中存在的鏈路對未來有可能出現(xiàn)的鏈路進行預測。近年來,社會網絡中的鏈路預測問題吸引了越來越多的研究人員關注,它在現(xiàn)代科學中不僅具有深刻的理論意義,而且具有極大的應用價值。 由于現(xiàn)有的鏈路預測算法主要應用于簡單的靜態(tài)無權網絡中,沒有考慮權重以及時間序列對于鏈路預測的影響,所以不能很好地適應復雜網絡的情形。為了解決這一問題,本文針對含權網絡,提出了節(jié)點權重和鏈路權重的概念,在擴展和結合已有鏈路預測算法的基礎上提出了新的鏈路預測算法。此外,針對時間感知網絡,提出了時間因子的概念,用來量化時間序列中的時間因素以幫助計算節(jié)點間的相似度;最后,綜合權重思想和時間因子的概念提出了基于時間感知的加權網絡鏈路預測算法。 本文針對加權網絡和時間感知網絡,分別選取了若干個真實數(shù)據(jù)集對提出的鏈路預測算法進行了分析比較。實驗結果表明,本文所提出的加權鏈路預測算法相比無權鏈路預測算法有更好的精度,基于時間感知的鏈路預測算法比不含時間因子的鏈路預測算法效果更明顯,結合了二者優(yōu)點的加權時間感知鏈路預測算法也獲得了較高的預測精度。圖21幅,表10個,參考文獻65篇。
[Abstract]:Link prediction is an important branch of social network research. Its main task is to predict the possible future links through the existing links in the current network. The problem of link prediction in social networks has attracted more and more researchers' attention. It not only has profound theoretical significance in modern science, but also has great application value. Because the existing link prediction algorithms are mainly used in simple static unweighted networks and do not consider the influence of weight and time series on link prediction, they can not adapt well to the situation of complex networks. In this paper, the concepts of node weight and link weight are proposed for weighted networks, and a new link prediction algorithm is proposed on the basis of extending and combining existing link prediction algorithms. The concept of time factor is proposed to quantify the time factor in time series to help calculate the similarity between nodes. Finally, a weighted network link prediction algorithm based on time perception is proposed based on the concept of weight and time factor. In this paper, several real data sets are selected to analyze and compare the proposed link prediction algorithms for weighted networks and time-aware networks. The experimental results show that, The weighted link prediction algorithm proposed in this paper has better precision than the unweighted link prediction algorithm. The link prediction algorithm based on time perception is more effective than the link prediction algorithm without time factor. The weighted time perceptual link prediction algorithm which combines the advantages of the two methods also has a high prediction accuracy. Fig. 21, table 10, references 65.
【學位授予單位】:中南大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TP393.09
【參考文獻】
相關期刊論文 前4條
1 呂琳媛;;復雜網絡鏈路預測[J];電子科技大學學報;2010年05期
2 呂琳媛;陸君安;張子柯;閆小勇;吳曄;史定華;周海平;方錦清;周濤;;復雜網絡觀察[J];復雜系統(tǒng)與復雜性科學;2010年Z1期
3 東昱曉;柯慶;吳斌;;基于節(jié)點相似性的鏈接預測[J];計算機科學;2011年07期
4 ;Learning Hierarchical User Interest Models from Web Pages[J];Wuhan University Journal of Natural Sciences;2006年01期
,本文編號:1511791
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/1511791.html
最近更新
教材專著