飛機蒙皮缺陷機器視覺檢測技術(shù)研究
[Abstract]:With the development of economy and technology, machine vision technology has taken the place of human eyes to go deep into all aspects of society and completely changed people's living environment. Machine vision inspection, which integrates machine vision and automation technology, is widely used in product defect detection in manufacturing industry, such as product assembly process detection and positioning, product packaging testing, product appearance quality testing, Goods sorting or fruit sorting in the logistics industry, machine vision can replace manual fast, accurate completion of the work. Aiming at the problem that it is difficult to detect the skin defects of the aged aircraft, this paper analyzes the advantages and disadvantages of the existing detection techniques, and uses machine vision, DSP, pattern recognition and other technologies to complete the construction of the skin defect detection system of the aged aircraft on the robot platform. Through wireless transmission technology, the real-time and dynamic skinning damage information is transmitted to the ground health monitoring platform for analysis, and the defect detection results can be obtained online. Aircraft skin defect image classification and rivet joint key part corrosion image classification are realized. The skin defect monitoring system of aging aircraft mainly includes six modules: image acquisition, wireless communication, image storage, image processing, feature extraction and pattern recognition. According to the requirements of the system, the software design of image acquisition module, wireless communication module, image storage hardware and image processing module, feature extraction module, pattern recognition module is completed. Aiming at the feature extraction of aircraft skin defect, the sample database of aircraft skin image is established, and the gray matrix method is used to extract the feature value of aircraft skin defect image, and the accuracy of the extracted feature value meets the requirements of the system. An improved rivet center location algorithm is presented to determine the center and radius of rivets. The improved algorithm improves the accuracy of rivet center determination. Furthermore, the accuracy of the characteristic value of the corrosion image of rivet joint is improved. In the pattern recognition module, the principle and classification application of general linear support vector machine, general nonlinear support vector machine and fuzzy support vector machine are expounded. Based on the FSVM method of sample center distance, the aircraft skin image and the corrosion grade of rivet connection are classified based on sample spacing FSVM method. The simulation results show that the algorithm can improve the recognition rate of aircraft skin defect image and riveted skin image to a certain extent. The aircraft skin defect monitoring system based on machine vision can complete the inspection in front of the computer without professional operators, compared with the current testing equipment. It has good expansibility and broad application prospect. It has great application significance to improve the reliability of aging aircraft.
【學(xué)位授予單位】:長春工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 吳央;袁運能;;基于小波包分解和FCM聚類的紋理圖像分割方法[J];北京航空航天大學(xué)學(xué)報;2008年05期
2 許舒斐;吳淑蓮;李暉;;基于灰度共生矩陣的人體皮膚紋理分析[J];激光生物學(xué)報;2011年03期
3 劉志敏,楊杰,施鵬飛;數(shù)學(xué)形態(tài)學(xué)的圖象分割算法[J];計算機工程與科學(xué);1998年04期
4 付宜利;李志海;;爬壁機器人的研究進展[J];機械設(shè)計;2008年04期
5 郭德軍,宋蟄存;基于灰度共生矩陣的紋理圖像分類研究[J];林業(yè)機械與木工設(shè)備;2005年07期
6 孟曉橋,胡占義;攝像機自標定方法的研究與進展[J];自動化學(xué)報;2003年01期
7 王昊;王從慶;;基于模糊支持向量機的飛機蒙皮損傷識別方法[J];科學(xué)技術(shù)與工程;2013年10期
8 王寧 ,唐伯雁 ,劉榮;被動吸附式小型爬壁機器人開發(fā)[J];微計算機信息;2005年14期
9 吳平川,路同浚,王炎;鋼板表面缺陷的無損檢測技術(shù)與應(yīng)用[J];無損檢測;2000年07期
10 高慶吉;王祥鳳;崔鵬;牛國臣;邢志偉;;飛機蒙皮缺陷磁光圖像識別算法研究[J];中國民航學(xué)院學(xué)報;2006年01期
相關(guān)博士學(xué)位論文 前1條
1 楊水山;冷軋帶鋼表面缺陷機器視覺自動檢測技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 王祥鳳;設(shè)備結(jié)構(gòu)缺陷無損自動識別算法研究[D];東北電力大學(xué);2006年
2 李靜;基于線掃描CCD的兩種印刷品質(zhì)量檢測系統(tǒng)的研究與開發(fā)[D];天津工業(yè)大學(xué);2008年
3 李麗;飛機蒙皮裂紋缺陷檢測算法研究[D];東北電力大學(xué);2010年
4 任宇飛;SVM模型改進的若干研究[D];南京郵電大學(xué);2013年
,本文編號:2336005
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/2336005.html