摩擦納米發(fā)電機(jī)設(shè)計(jì)與制備及應(yīng)用研究
本文選題:摩擦電效應(yīng) + 納米發(fā)電機(jī); 參考:《電子科技大學(xué)》2015年博士論文
【摘要】:摩擦起電現(xiàn)象作為一種極其普遍的物理現(xiàn)象,幾乎存在于人們?nèi)粘I畹母鱾(gè)方面。但是,摩擦起電常常被認(rèn)為是一種負(fù)面效應(yīng),在許多情況下人們都通過(guò)各種技術(shù)和途徑來(lái)防止摩擦起電的產(chǎn)生。最近,美國(guó)佐治亞理工學(xué)院的王中林教授小組發(fā)明了基于摩擦起電效應(yīng)和靜電感應(yīng)耦合作用的摩擦納米發(fā)電機(jī)(TENG),這種發(fā)電機(jī)能夠用來(lái)將機(jī)械能轉(zhuǎn)化為電能。TENG作為一種能量供給器件,其內(nèi)部的兩種摩擦電極性不同的材料在接觸時(shí)由于摩擦電效應(yīng)會(huì)在表面生成摩擦電荷,分離時(shí)由于電勢(shì)差的作用會(huì)在外界電路上形成了電流輸出。制備摩擦發(fā)電機(jī)的材料為日常生活最常見(jiàn)的材料,如紙張、纖維織物、聚二甲基硅氧烷(polydimethylsiloxane,PDMS)、聚四氟乙烯(polytetrafluoroethylene,PTFE)、鋁(aluminum,Al)、聚氯乙烯(polyvinylchloride,PVC)、氟化乙丙烯(fluorinated ethylene propylene,FEP)等。TENG能用于收集各種形式的機(jī)械能量,比如人體運(yùn)動(dòng)、機(jī)械振動(dòng)、旋轉(zhuǎn)、風(fēng)能、聲波、水流、雨滴和海浪等。此外,通過(guò)將各種機(jī)械運(yùn)動(dòng)轉(zhuǎn)化成電信號(hào),摩擦納米發(fā)電機(jī)可以作為自供能傳感器來(lái)探測(cè)位移、速度、金屬離子、濕度、溫度、紫外光強(qiáng)等。本論文提出并設(shè)計(jì)了若干種不同結(jié)構(gòu)、不同工作原理的TENG及基于TENG的自供能傳感器。經(jīng)過(guò)系統(tǒng)的實(shí)驗(yàn)測(cè)試和計(jì)算模擬,研究了TENG及自供能傳感器的工作機(jī)制,同時(shí)進(jìn)一步實(shí)現(xiàn)了TENG和自供能傳感器的相關(guān)應(yīng)用。本文的研究工作主要包括以下幾點(diǎn):1.甲基橙(MO)在紫外光的照射下能夠被二氧化鈦納米顆粒光催化降解。紫外光照射下產(chǎn)生的光生空穴和電子能夠遷移到二氧化鈦顆粒表面,作為氧化還原反應(yīng)源與吸附的反應(yīng)劑反應(yīng),形成具有強(qiáng)氧化性的超氧陰離子、過(guò)氧化氫和羥基。這些氧化劑能分解水中的有機(jī)染料和污染物。本項(xiàng)研究采用一種以PTFE和Al為起電材料的接觸分離式的TENG。這種發(fā)電機(jī)的輸出端可以在MO中形成一個(gè)定向電場(chǎng),有效地提高二氧化鈦顆粒中光生空穴-電子對(duì)的拆分并抑制其復(fù)合,從而加強(qiáng)了光催化降解反應(yīng)。由于光電耦合作用,在相同的120分鐘的降解過(guò)程中,沒(méi)有TENG輔助的MO降解率為27%,而具有TENG輔助的MO降解率為76%。這種摩擦發(fā)電機(jī)輔助光降解的方法在污水處理、水裂解和環(huán)境凈化等方面都具有巨大的應(yīng)用潛力。2.設(shè)計(jì)并制備出一種單電極的摩擦電傳感器(SE-TES)用于監(jiān)測(cè)塑料管道里的物體運(yùn)動(dòng)情況。這種設(shè)計(jì)新穎、成本低廉、結(jié)構(gòu)簡(jiǎn)單的SE-TES由薄膜狀的銅電極條和一根PTFE管構(gòu)成。利用摩擦起電和靜電感應(yīng)的耦合作用,制備的傳感器能夠?qū)⒈粶y(cè)物機(jī)械運(yùn)動(dòng)的動(dòng)能轉(zhuǎn)換為電極上的電信號(hào)。在管道外壁上布置均勻等距的銅電極條陣列可以用來(lái)探測(cè)管內(nèi)被測(cè)物的運(yùn)動(dòng)位置和速度。這種位移傳感器的信噪比可達(dá)到5.3×103。通過(guò)對(duì)被測(cè)物摩擦電信號(hào)的采集和處理,可以在顯示屏或者led陣列上實(shí)時(shí)地檢測(cè)管內(nèi)物體的當(dāng)前位置和運(yùn)動(dòng)信息。此外,這種基于摩擦電原理的自供能跟蹤系統(tǒng)還能用于探測(cè)水管的堵塞位置。本項(xiàng)工作展示了摩擦電傳感器用于自供能跟蹤系統(tǒng)、管道堵塞探測(cè)、物流監(jiān)控等方面的巨大潛力。3.研制出了一種全封閉的單電極摩擦發(fā)電機(jī)(s-teng)。這種s-teng結(jié)構(gòu)上由表面納米化的可溶性聚四氟乙烯(polytetrafluoroethylene,pfa)小球、乳膠充氣氣球和位于氣球底部的al電極構(gòu)成。s-teng的工作機(jī)理是分成兩個(gè)獨(dú)立、分布的步驟:pfa球與乳膠氣球之間接觸摩擦起電以及帶有電荷的pfa球和al電極之間的靜電感應(yīng)。通過(guò)實(shí)驗(yàn)測(cè)量和理論模擬,系統(tǒng)地研究了發(fā)電機(jī)工作長(zhǎng)度和感應(yīng)距離對(duì)其輸出性能的影響。s-teng可以輸出236v的開(kāi)路電壓和4.8μa的短路電流,并能作為持續(xù)穩(wěn)定的電源同時(shí)點(diǎn)亮十余盞led。研制的s-teng在氣流能量收集、空中導(dǎo)航和環(huán)境監(jiān)控方面顯示出了極大的應(yīng)用潛力。4.對(duì)環(huán)境中水體能量的收集一直是世界范圍內(nèi)急需解決的技術(shù)難題。在本項(xiàng)工作中,先后設(shè)計(jì)并制備了收集水體靜電能的固液界面靜電摩擦發(fā)電機(jī)以及能夠同時(shí)收集水體靜電能和動(dòng)能的復(fù)合型水能摩擦發(fā)電機(jī)。固液界面靜電摩擦發(fā)電機(jī)結(jié)構(gòu)上由fep薄膜以及薄膜下方的條狀電極構(gòu)成。波動(dòng)的水浪非對(duì)稱地屏蔽接觸面表面的摩擦電極,從而導(dǎo)致了電極條之間自由電子的流動(dòng),進(jìn)而實(shí)現(xiàn)發(fā)電。復(fù)合型水能摩擦發(fā)電機(jī)由兩部分組成:固液界面靜電發(fā)電機(jī)和撞擊式摩擦發(fā)電機(jī)。其中,固液界面靜電發(fā)電機(jī)由pfa薄膜以及薄膜下方的條狀電極構(gòu)成,用于收集固液界面的靜電能。撞擊式摩擦發(fā)電機(jī)由納米化的ptfe薄膜、彈性的波浪電極構(gòu)成,用于收集波浪沖擊的動(dòng)能。在傳播速度為0.5m/s的水浪作用下,固液界面靜電摩擦發(fā)電機(jī)和撞擊式摩擦發(fā)電機(jī)的短路電流分別為5.1μa和4.3μa,能夠同時(shí)點(diǎn)亮50盞led?紤]到自然水體中可含有礦物質(zhì)和鹽分,本項(xiàng)工作研究了水體中鹽度對(duì)發(fā)電機(jī)輸出性能的影響。此外,復(fù)合型摩擦發(fā)電機(jī)還能制成自供能的求救信號(hào)發(fā)生裝置,能夠用于水上搜救。考慮到此項(xiàng)技術(shù)的可擴(kuò)展型,這種水能發(fā)電機(jī)在水能收集,環(huán)境監(jiān)測(cè)和水上搜救等方面具有不可限量的發(fā)展?jié)摿Α?.摩擦發(fā)電機(jī)作為一種簡(jiǎn)單、可靠、廉價(jià)、有效的環(huán)境機(jī)械能收集方法,對(duì)其溫度響應(yīng)的研究工作還比較少。本項(xiàng)工作系統(tǒng)地研究了teng在77k到320k范圍內(nèi)的溫度響應(yīng)。先后研究了半導(dǎo)體/聚合物、表面修飾后的半導(dǎo)體/聚合物、金屬/聚合物型teng的輸出性能與溫度的關(guān)系。測(cè)試結(jié)果表明,半導(dǎo)體/聚合物、表面修飾后的半導(dǎo)體/聚合物型的teng的輸出電壓和輸出電流均隨著溫度的降低而降低;而金屬/聚合物型TENG的電輸出隨著溫度的降低而升高。從實(shí)驗(yàn)結(jié)果可知,TENG能夠在77 K到320 K的溫度范圍內(nèi)正常工作;赑TFE和Al為接觸材料的TENG在77 K條件下的輸出電壓輸出比室溫下增加了79.3%,并能作為持續(xù)穩(wěn)定的電源同時(shí)點(diǎn)亮16盞LED。本項(xiàng)工作不僅為在極端環(huán)境條件下工作的TENG設(shè)計(jì)和封裝奠定了夯實(shí)的基礎(chǔ),而且在理論分析上深入地討論了摩擦起電原理。
[Abstract]:Friction lifting is an extremely common physical phenomenon, which almost exists in every aspect of people's daily life. However, friction lifting is often considered a negative effect. In many cases, people are able to prevent electricity from friction through various techniques and ways. Recently, the Wang Middle School of Georgia Institute of Technology in the United States The group invented the friction nanoscale generator (TENG) based on the frictional electric effect and the electrostatic induction coupling, which can be used to convert the mechanical energy into the electrical energy.TENG as an energy supply device. The two different materials in its internal friction electrode can generate friction on the surface due to the friction effect. The material of the friction generator is the most common material for daily life, such as paper, fiber fabric, polymethylsiloxane (polydimethylsiloxane, PDMS), polytetrafluoroethylene (polytetrafluoroethylene, PTFE), aluminum (aluminum, Al), polyvinyl chloride (polyvin), and polyvinyl chloride (polyvin). Ylchloride, PVC), fluorinated ethylene propylene, FEP, etc..TENG can be used to collect various forms of mechanical energy, such as human motion, mechanical vibration, rotation, wind, sound wave, water flow, raindrops, and waves. In addition, by converting various mechanical motions into electrical signals, friction nanoscale can be used as a self supply sensor. The device is used to detect the displacement, velocity, metal ion, humidity, temperature, ultraviolet light intensity and so on. In this paper, several kinds of different structures, different working principles of TENG and TENG based self supply sensor are designed and designed. The working mechanism of TENG and self energy supply sensors is studied through the system experiment test and calculation, and the TENG is further realized. The research work in this paper mainly includes the following points: 1. the 1. methyl orange (MO) can be degraded by the photocatalytic degradation of titanium dioxide nanoparticles under ultraviolet light. The photogenerated holes and electrons produced by UV irradiation can be migrated to the surface of titanium dioxide particles as the source of redox reaction and adsorption. The reaction agent reacts to form a superoxide anion with strong oxidation, hydrogen peroxide and hydroxyl. These oxidants can decompose organic dyes and contaminants in water. In this study, the output end of a contact separation type TENG. generator with PTFE and Al as the electrical material can form a directional electric field in MO, which is effectively improved. The photocatalytic degradation reaction was enhanced by the splitting and inhibiting the recombination of the photogenerated hole electron pair in the titanium dioxide particles, and the degradation rate of MO was not TENG assisted in the same 120 minute degradation process due to the photoelectricity coupling, while the TENG assisted MO degradation rate was 76%., a method of assisted photodegradation of the friction generator. Sewage treatment, water cracking and environmental purification have great potential application potential.2. design and preparation of a single electrode friction electric sensor (SE-TES) for monitoring the motion of objects in plastic pipes. This novel design, low cost and simple structure of SE-TES consists of thin film copper electrode and a PTFE tube. The sensor can convert the kinetic energy of the mechanical motion of the measured object into the electrical signal on the electrode. The uniform equidistant copper electrode array on the outer wall of the pipe can be used to detect the motion position and speed of the measured object in the tube. The signal to noise ratio of the displacement sensor can reach 5.3 * 103.. By collecting and processing the friction signals of the measured objects, the current position and motion information of the objects in the tube can be detected on the display or LED array in real time. In addition, the self supply tracking system based on the principle of friction electricity can also be used to detect the plugging position of the pipe. This work shows the use of the friction sensor for self supply. The great potential of tracking system, pipeline plugging detection, logistics monitoring and so on.3. developed a completely closed single electrode friction generator (s-teng). This s-teng structure is composed of surface nanocrystalline soluble polytetrafluoroethylene (polytetrafluoroethylene, PFA) ball, latex inflatable balloon and Al electrode located at the bottom of the balloon to form.S-teng The working mechanism is divided into two independent and distributed steps: the contact friction between the PFA ball and the latex balloon and the electrostatic induction between the PFA ball with the charge and the Al electrode. Through the experimental measurement and the theoretical simulation, the effect of the generator working length and the induction distance on its output performance is systematically studied..s-teng can output 236v. Open circuit voltage and short circuit current of 4.8 Mu A, and can light up more than ten led. as the continuous and stable power supply, the s-teng in the air energy collection, air navigation and environmental monitoring shows great potential application potential.4. collection of water energy in the environment has been a technical problem urgently needed to be solved in the world. The electrostatic friction generator, which collects the electrostatic energy of the water body, and the composite water energy friction generator which can collect the static energy and kinetic energy of the water body at the same time, are designed and prepared. The structure of the electrostatic friction generator at the solid-liquid interface consists of the FEP film and the strip electrode under the film. The wave waves are not shielded asymmetrically. The friction electrode on the surface of the contact surface leads to the flow of free electrons between the electrodes, and then to achieve power generation. The composite type water energy friction generator consists of two parts: a solid-liquid interface electrostatic generator and an impact friction generator. The solid liquid interface electrostatic generator is composed of a PFA film and a strip electrode under the film. The electrostatic energy of the solid-liquid interface is collected. The impact type friction generator is composed of nanocrystalline PTFE film and elastic wave electrode, which is used to collect the kinetic energy of wave shock. The short-circuit current of the electrostatic friction generator and the impact type friction generator at the solid-liquid interface is 5.1 and 4.3 a respectively under the action of the wave velocity of 0.5m/s. In this work, the effect of salinity on the output performance of the generator is studied in this work. The effect of the salinity on the output performance of the generator is studied in this work. In addition, the composite type friction generator can also be made into a self powered rescue signal generator which can be used for water search and rescue. Considering the extensible type of this technology, this kind of water can generate electricity. The machine has unlimited development potential in water energy collection, environmental monitoring and water search and rescue..5. friction generator is a simple, reliable, cheap and effective environmental mechanical energy collection method. The research work on its temperature response is still relatively small. This work systematically studied the temperature response of Teng in the range of 77K to 320K. The relationship between semiconductor / polymer, surface modified semiconductor / polymer, metal / polymer type Teng's output performance and temperature is investigated. The test results show that the output voltage and output current of semiconductor / polymer, semiconductor / polymer type Teng after surface modification are reduced with the decrease of temperature; and metal / polymer type The electrical output of TENG increases with the decrease of temperature. It is known from the experimental results that TENG can work normally within the temperature range of 77 K to 320 K. The output voltage output of TENG based on PTFE and Al is 79.3% higher than room temperature under the condition of 77 K, and it can be used as a continuous and stable power supply to light up 16 LED. tasks at the same time. It lays a solid foundation for TENG design and encapsulation in extreme environmental conditions, and theoretically discusses the principle of tribo electrification.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM31
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;中國(guó)科學(xué)家研制出纖維納米發(fā)電機(jī)[J];機(jī)械研究與應(yīng)用;2008年02期
2 ;“只要能動(dòng),就能發(fā)電”華人科學(xué)家研制出纖維納米發(fā)電機(jī)[J];材料工程;2008年04期
3 ;美國(guó)華人科學(xué)家研制出“纖維納米發(fā)電機(jī)”[J];工程塑料應(yīng)用;2008年04期
4 ;美科學(xué)家開(kāi)發(fā)活體肌肉伸縮帶動(dòng)的納米發(fā)電機(jī)[J];材料工程;2009年03期
5 ;納米發(fā)電機(jī):移動(dòng)身體就可發(fā)電[J];現(xiàn)代職業(yè)安全;2009年05期
6 雨薇;;微型“納米發(fā)電機(jī)”[J];技術(shù)與市場(chǎng);2010年07期
7 李德俊;;由隨機(jī)振動(dòng)所驅(qū)動(dòng)的納米發(fā)電機(jī)——從無(wú)序中提煉出有序[J];吉首大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期
8 凱瑟琳·波爾扎克;;納米發(fā)電機(jī) 能量倍增[J];科技創(chuàng)業(yè);2010年12期
9 ;高性能納米發(fā)電機(jī)研究獲進(jìn)展[J];技術(shù)與市場(chǎng);2013年07期
10 Mary;;納米能源所旋轉(zhuǎn)式直流摩擦納米發(fā)電機(jī)研制成功[J];今日電子;2014年04期
相關(guān)會(huì)議論文 前3條
1 ;中國(guó)研制成功水能摩擦納米發(fā)電機(jī),可收集海浪能量![A];中國(guó)農(nóng)機(jī)工業(yè)協(xié)會(huì)風(fēng)能設(shè)備分會(huì)《中小型風(fēng)能設(shè)備與應(yīng)用》(2014年第3期)[C];2014年
2 王現(xiàn)英;程宏斌;鄭學(xué)軍;;基于ZnO納米線的微納能量轉(zhuǎn)換器件[A];第16屆全國(guó)疲勞與斷裂學(xué)術(shù)會(huì)議會(huì)議程序冊(cè)[C];2012年
3 江鵬;于愛(ài)芳;王中林;;垂直集成的氧化鋅納米發(fā)電機(jī)[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 記者 張忠霞;美國(guó)華人科學(xué)家發(fā)明交流納米發(fā)電機(jī)[N];新華每日電訊;2008年
2 張忠霞;封裝型交流納米發(fā)電機(jī)問(wèn)世[N];中國(guó)石化報(bào);2008年
3 記者 石玉平;我國(guó)研制出水能摩擦納米發(fā)電機(jī)[N];中國(guó)船舶報(bào);2014年
4 通訊員 李崢;中科院研制成功“水能摩擦納米發(fā)電機(jī)”[N];中國(guó)電力報(bào);2014年
5 李崢巍;我國(guó)研制成功水能摩擦納米發(fā)電機(jī)[N];中國(guó)海洋報(bào);2014年
6 葛秋芳;借助納米發(fā)電機(jī),心跳都能發(fā)電[N];新華每日電訊;2008年
7 記者 欒輝;中國(guó)科學(xué)家研制出纖維納米發(fā)電機(jī)[N];各界導(dǎo)報(bào);2008年
8 本報(bào)記者 劉霞;納米發(fā)電機(jī),小材有大用[N];科技日?qǐng)?bào);2010年
9 記者 劉霞;首個(gè)可商用的納米發(fā)電機(jī)問(wèn)世[N];科技日?qǐng)?bào);2011年
10 記者媛媛;我市與美國(guó)新能源公司簽訂“納米發(fā)電機(jī)項(xiàng)目”合作協(xié)議[N];唐山勞動(dòng)日?qǐng)?bào);2011年
相關(guān)博士學(xué)位論文 前6條
1 崔暖洋;壓電發(fā)電機(jī)與摩擦電發(fā)電機(jī)對(duì)環(huán)境中微弱機(jī)械能的收集[D];蘭州大學(xué);2015年
2 蘇元捷;摩擦納米發(fā)電機(jī)設(shè)計(jì)與制備及應(yīng)用研究[D];電子科技大學(xué);2015年
3 闕榮輝;硅碳納米材料在納米發(fā)電機(jī)中的應(yīng)用研究[D];蘇州大學(xué);2012年
4 張虎林;摩擦電納米發(fā)電機(jī)(TENG)的結(jié)構(gòu)設(shè)計(jì)及其相關(guān)應(yīng)用研究[D];重慶大學(xué);2014年
5 邱宇;氧化鋅微納結(jié)構(gòu)的生長(zhǎng)及其壓電器件研究[D];大連理工大學(xué);2013年
6 白所;自供能紫外傳感器[D];蘭州大學(xué);2014年
相關(guān)碩士學(xué)位論文 前6條
1 顧隴;一維鋯鈦酸鉛納米材料的制備及高輸出納米發(fā)電機(jī)的制作[D];蘭州大學(xué);2013年
2 毛夢(mèng)燁;無(wú)機(jī)鹽摻雜聚偏氟乙烯納米發(fā)電機(jī)的制備[D];東華大學(xué);2014年
3 錢(qián)程;GaN納米線的制備及在納米發(fā)電機(jī)領(lǐng)域的應(yīng)用[D];遼寧師范大學(xué);2012年
4 肖鑫澤;基于PDMS微納結(jié)構(gòu)的純?nèi)嵝詥坞姌O摩擦電納米發(fā)電機(jī)[D];吉林大學(xué);2015年
5 王軍艷;取向ZnO納米線陣列的制備及在納米發(fā)電機(jī)中的應(yīng)用[D];遼寧師范大學(xué);2012年
6 孫婧;基于生物相容性材料摩擦電發(fā)電機(jī)的制備及性能研究[D];天津理工大學(xué);2015年
,本文編號(hào):1945693
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1945693.html