基于機(jī)器視覺的焊接工件識別與焊接軌跡校正方法研究
本文選題:焊接機(jī)器人 + 機(jī)器視覺; 參考:《華南理工大學(xué)》2015年碩士論文
【摘要】:由于人工焊接存在工作環(huán)境惡劣、勞動強(qiáng)度大、效率低、焊接質(zhì)量得不到保證等問題,當(dāng)前焊接機(jī)器人已經(jīng)在許多工業(yè)領(lǐng)域得到了應(yīng)用。然而焊接機(jī)器人一般采用示教再現(xiàn)方式工作,為確保這種工作方式能在具體焊接環(huán)境中實施,需要解決兩個關(guān)鍵問題:第一正確識別焊接工件以確定示教程序。第二對前工序中由人工點焊定位導(dǎo)致的定位誤差進(jìn)行自動補(bǔ)償。這兩個問題是焊接機(jī)器人應(yīng)用的突出技術(shù)難點,成為制約焊接機(jī)器人技術(shù)推廣應(yīng)用的瓶頸。為此,本課題采用機(jī)器視覺技術(shù),以解決焊接工件識別和焊接軌跡自動校正的問題。本課題的研究獲得了廣東省科技計劃項目(編號:2011A091101001,工業(yè)機(jī)器人核心技術(shù)研究及典型產(chǎn)品產(chǎn)業(yè)化)和企業(yè)橫向項目(集裝箱后端生產(chǎn)線全自動裝配和焊接機(jī)器人應(yīng)用,南方中集東部物流裝備制造有限公司)的資助。本文研究了手眼系統(tǒng)的標(biāo)定方法。針對Eye-to-Hand和Eye-in-Hand兩種不同的焊接機(jī)器人和視覺系統(tǒng)安裝方式,分別采用不同的手眼系統(tǒng)標(biāo)定方法。獲得攝像機(jī)的內(nèi)外參數(shù),計算攝像機(jī)坐標(biāo)系、機(jī)器人末端坐標(biāo)系及世界坐標(biāo)系之間的轉(zhuǎn)換矩陣,從而實現(xiàn)圖像坐標(biāo)系和世界坐標(biāo)系的轉(zhuǎn)換。本文研究了圖像預(yù)處理技術(shù),包括灰度轉(zhuǎn)換、濾波去噪、閾值處理、形態(tài)學(xué)運算及邊緣檢測。通過對圖像預(yù)處理,濾去噪聲,增強(qiáng)目標(biāo)信息,使其具有一定的魯棒性。在此基礎(chǔ)上,對焊接工件的特征進(jìn)行了分析和提取,結(jié)合這些特征,設(shè)計和訓(xùn)練了高斯混合模型分類器、多層感知神經(jīng)網(wǎng)絡(luò)分類器及支持向量機(jī)分類器,并對特征向量和分類器參數(shù)進(jìn)行了優(yōu)化,最終確定最優(yōu)的特征向量和分類器參數(shù),以實現(xiàn)焊接工件的準(zhǔn)確識別。本文在傳統(tǒng)模板匹配技術(shù)基礎(chǔ)上提出了基于幾何形狀的金字塔分層匹配算法,提取圖像幾何特征,并對幾何特征進(jìn)行了分層。計算灰度區(qū)域的圖像質(zhì)心,對焊接工件進(jìn)行定位。以像素點的平移矩陣和旋轉(zhuǎn)矩陣為基礎(chǔ),根據(jù)模板匹配檢測到的偏移量和旋轉(zhuǎn)角度,計算出實際軌跡,從而校正焊接軌跡。本文設(shè)計了基于機(jī)器視覺的焊接機(jī)器人實驗平臺,并進(jìn)行了焊接工件的分類、檢測、識別定位和焊接軌跡校正實驗。實驗結(jié)果表明上述的理論和算法都能滿足焊接機(jī)器人對時間和精度的要求。本課題研究的成果目前已用于南方中集東部物流裝備制造有限公司的集裝箱后端鎖座和鉸鏈的焊接,不僅焊縫質(zhì)量良好,而且能滿足焊接生產(chǎn)線對時序的要求。
[Abstract]:Due to the problems of poor working environment, high labor intensity, low efficiency and unguaranteed welding quality in manual welding, welding robots have been applied in many industrial fields. However, welding robots generally work in teaching and reproducing mode. In order to ensure that the working mode can be implemented in a specific welding environment, two key problems need to be solved: first, the welding workpiece is correctly identified to determine the teaching procedure. Second, the positioning error caused by manual spot welding in the former procedure is automatically compensated. These two problems are the prominent technical difficulties in the application of welding robot and become the bottleneck restricting the application of welding robot technology. Therefore, machine vision technology is used to solve the problem of welding workpiece identification and automatic correction of welding track. The research of this subject has obtained the project of Guangdong province science and technology plan (number: 2011A091101001, industrial robot core technology research and typical product industrialization) and enterprise horizontal project (automatic assembly and welding robot application of container back-end production line), Southern Zhongji East Logistics equipment Manufacturing Co., Ltd. The calibration method of hand-eye system is studied in this paper. Aiming at two different installation modes of welding robot and vision system, Eye-to-Hand and Eye-in-Hand, different calibration methods of hand-eye system are adopted. The internal and external parameters of the camera are obtained, and the transformation matrix between the camera coordinate system, the robot terminal coordinate system and the world coordinate system is calculated, and the transformation between the image coordinate system and the world coordinate system is realized. In this paper, image preprocessing techniques including gray conversion, filtering and denoising, threshold processing, morphological operation and edge detection are studied. By image preprocessing, noise is filtered, and target information is enhanced to make it robust. On this basis, the features of welded workpieces are analyzed and extracted. Combined with these features, Gao Si hybrid model classifier, multi-layer perceptual neural network classifier and support vector machine classifier are designed and trained. The eigenvector and classifier parameters are optimized and the optimal eigenvector and classifier parameters are finally determined in order to realize the accurate identification of the welded workpiece. In this paper, based on the traditional template matching technology, a pyramid hierarchical matching algorithm based on geometric shape is proposed, which extracts the geometric features of images and delaminate the geometric features. The image centroid of gray area is calculated and the welding workpiece is located. Based on the translation matrix and rotation matrix of pixels, the actual track is calculated according to the offset and rotation angle detected by template matching, and the welding trajectory is corrected. In this paper, a welding robot experimental platform based on machine vision is designed, and the experiments of welding workpiece classification, detection, identification, location and welding trajectory correction are carried out. The experimental results show that the above theory and algorithm can meet the requirements of time and precision of welding robot. The research results of this paper have been applied to the welding of container rear end locking seat and hinge in South Zhongji East Logistics equipment Manufacturing Co., Ltd., which not only have good weld quality, but also meet the requirements of welding production line.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TP242;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅珍茜;薛雷;孫峰杰;陸士清;李長遠(yuǎn);;基于HALCON的攝像機(jī)標(biāo)定[J];電視技術(shù);2010年04期
2 蔡春波;張華軍;張義順;劉立君;;基于視覺傳感器焊縫跟蹤軌跡自示教方法研究[J];哈爾濱理工大學(xué)學(xué)報;2009年02期
3 趙東波,熊有倫;機(jī)器人離線編程系統(tǒng)的研究[J];機(jī)器人;1997年04期
4 周金和;彭福堂;;一種有選擇的圖像灰度化方法[J];計算機(jī)工程;2006年20期
5 畢勝;;國內(nèi)外工業(yè)機(jī)器人的發(fā)展現(xiàn)狀[J];機(jī)械工程師;2008年07期
6 顏發(fā)根,劉建群,陳新,丁少華;機(jī)器視覺及其在制造業(yè)中的應(yīng)用[J];機(jī)械制造;2004年11期
7 翟敬梅;唐會華;鄒焱飚;;面向數(shù)控雕刻的圖像角點檢測研究[J];中國測試;2014年04期
8 張瑩;開閉運算在消除圖象噪聲中的應(yīng)用研究[J];濰坊學(xué)院學(xué)報;2002年02期
9 李曉飛,馬大瑋,粘永健,孫晶菁;圖像腐蝕和膨脹的算法研究[J];影像技術(shù);2005年01期
10 關(guān)勝曉;機(jī)器視覺及其應(yīng)用發(fā)展[J];自動化博覽;2005年03期
相關(guān)博士學(xué)位論文 前2條
1 趙于前;基于數(shù)學(xué)形態(tài)學(xué)的醫(yī)學(xué)圖像處理理論與方法研究[D];中南大學(xué);2006年
2 蔡廣宇;弧焊機(jī)器人運動位姿精度與焊縫圖像處理技術(shù)研究[D];華中科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前5條
1 董文輝;基于機(jī)器視覺的工業(yè)機(jī)器人抓取技術(shù)的研究[D];華中科技大學(xué);2011年
2 陳麗華;數(shù)控集裝箱專用焊機(jī)研制[D];西安理工大學(xué);2005年
3 張強(qiáng);圖像匹配算法研究[D];西安電子科技大學(xué);2006年
4 潘武;基于機(jī)器視覺的工件的識別和定位[D];北京化工大學(xué);2012年
5 薛泠子;基于形態(tài)學(xué)的SAR目標(biāo)特征提取與分類方法研究[D];電子科技大學(xué);2013年
,本文編號:1928661
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1928661.html