含磁流變阻尼器重卡駕駛室懸置系統(tǒng)的半主動(dòng)控制研究
本文選題:駕駛室 + 半主動(dòng)懸置; 參考:《哈爾濱工業(yè)大學(xué)》2015年博士論文
【摘要】:近年來,隨著我國電子商務(wù)的快速發(fā)展,貨運(yùn)物流的需求也不斷提高。然而在長時(shí)間的運(yùn)輸途中,重卡駕駛室內(nèi)的振動(dòng)直接影響著駕乘人員的身心健康和運(yùn)輸安全。磁流變阻尼器(magnetorheological damper,MRD)是一種高效的振動(dòng)半主動(dòng)控制執(zhí)行器件,具有結(jié)構(gòu)簡單可靠、出力大、抗干擾能力強(qiáng)和能耗低等優(yōu)點(diǎn),是目前振動(dòng)控制領(lǐng)域應(yīng)用研究的熱點(diǎn)。本文基于磁流變阻尼器,研究全浮式重卡駕駛室半主動(dòng)懸置在振動(dòng)控制中存在的若干問題。由于MRD復(fù)雜的非線性物理特性,建立其準(zhǔn)確的控制模型并設(shè)計(jì)高效的半主動(dòng)控制器具有一定難度,而這也是國內(nèi)外學(xué)者研究的熱點(diǎn)。目前基于MRD的振動(dòng)半主動(dòng)控制系統(tǒng)多采用天棚控制策略和智能控制算法,然而天棚控制策略和智能控制算法在控制精度上和響應(yīng)速度方面存在天然的缺陷。同時(shí)以電磁場和流體驅(qū)動(dòng)的MRD含有不可忽略的時(shí)滯,而這也將降低甚至惡化振動(dòng)半主動(dòng)控制的效果。本文針對目前振動(dòng)半主動(dòng)控制中存在的問題展開研究。論文首先討論了MRD在穩(wěn)態(tài)電流輸入下的動(dòng)力學(xué)模型的建立。在MRD穩(wěn)態(tài)電流動(dòng)力模型的建立中,以駕駛室懸置用MRD動(dòng)力特性測試數(shù)據(jù)為基礎(chǔ),研究傳統(tǒng)MRD的動(dòng)力模型,在MRD的動(dòng)力特性曲線分析的基礎(chǔ)上,提出了考慮機(jī)械柔度和裝配間隙的機(jī)械滯后模型。從模型精度、可逆性和復(fù)雜度角度將各模型進(jìn)行對比分析。結(jié)果表明基于Tanh函數(shù)的機(jī)械滯后模型綜合精度最高,而簡化的Tanh函數(shù)模型逆函數(shù)求解方便,同時(shí)也具備較高的精度;跈C(jī)械滯后模型,分析機(jī)械系統(tǒng)柔度和間隙對MRD瞬態(tài)響應(yīng)特性的影響。利用電路理論,預(yù)測電流源驅(qū)動(dòng)模式和電壓源驅(qū)動(dòng)模式下MRD電流響應(yīng)時(shí)間。針對駕駛室懸置用MRD進(jìn)行階躍電流響應(yīng)測試,并研究速度和驅(qū)動(dòng)電流幅值對MRD響應(yīng)時(shí)間的影響。數(shù)值仿真結(jié)果表明,MRD時(shí)滯模型能夠較好的解釋MRD阻尼力隨電流瞬態(tài)變化的響應(yīng)特性;贛RD動(dòng)力模型,提出一種磁流變阻尼力線性化控制的方法。對MRD的阻尼力進(jìn)行分解,并將簡化的Tanh函數(shù)模型分解并求其逆函數(shù),并將逆函數(shù)串聯(lián)至MRD控制電流輸入通道,通過引入閉環(huán)控制策略,實(shí)現(xiàn)MRD庫侖力和黏性阻尼力近似線性化,為振動(dòng)半主動(dòng)控制系統(tǒng)的設(shè)計(jì)和分析奠定了基礎(chǔ)。以MRD簡化Tanh函數(shù)模型為基礎(chǔ),研究了兩種1/4駕駛室半主動(dòng)懸置系統(tǒng)(車架-駕駛室系統(tǒng)和車架-駕駛室-座椅系統(tǒng))的振動(dòng)傳遞特性。依據(jù)振動(dòng)半主動(dòng)控制特點(diǎn),并基于振動(dòng)傳遞特性,提出振動(dòng)隔離抑制率和綜合傳遞率作為半主動(dòng)控制效果的評價(jià)準(zhǔn)則;谠摐(zhǔn)則,研究時(shí)滯對天棚阻尼控制和狀態(tài)反饋?zhàn)顑?yōu)控制效果造成的影響。結(jié)果表明,對于車架-駕駛室系統(tǒng)和車架-駕駛室-座椅系統(tǒng),時(shí)滯均能不同程度地影響了天棚阻尼控制和狀態(tài)反饋?zhàn)顑?yōu)控制的振動(dòng)控制效果。其中,時(shí)滯對天棚阻尼控制影響更為顯著;赟mith預(yù)估補(bǔ)償設(shè)計(jì)含可變時(shí)滯補(bǔ)償環(huán)節(jié)的自適應(yīng)天棚控制器。利用等維變換理論,推導(dǎo)并設(shè)計(jì)基于狀態(tài)反饋?zhàn)顑?yōu)控制的時(shí)滯最優(yōu)控制器,并將MRD的時(shí)滯表達(dá)式引入時(shí)滯補(bǔ)償環(huán)節(jié),得到可變時(shí)滯的時(shí)滯最優(yōu)控制器。針對兩種1/4駕駛室懸置系統(tǒng)進(jìn)行仿真評估,結(jié)果表明自適應(yīng)天棚控制器和時(shí)滯最優(yōu)控制器均能很好的減小時(shí)滯對控制系統(tǒng)產(chǎn)生的影響。建立重卡駕駛室懸置系統(tǒng)10自由度動(dòng)力學(xué)模型,研究并設(shè)計(jì)了自適應(yīng)PID控制器、自適應(yīng)天棚阻尼控制器和時(shí)滯最優(yōu)控制器。仿真研究控制器失效情況下懸置系統(tǒng)的傳遞特性。結(jié)果表明,在三種失效模式下,雖然重卡駕駛室懸置系統(tǒng)的舒適度有所降低,但均未出現(xiàn)失穩(wěn)現(xiàn)象。通過仿真計(jì)算,評估了三種控制器對重卡駕駛室半主動(dòng)懸置系統(tǒng)振動(dòng)控制的效果。結(jié)果表明,在三種控制算法中,時(shí)滯最優(yōu)控制效果最佳,其次是自適應(yīng)PID控制和自適應(yīng)天棚阻尼控制,但就降低幅度言兩者差別不大。文章最后建立一套1/4駕駛室懸置系統(tǒng)實(shí)驗(yàn)臺,基于Matlab快速控制原型開發(fā)技術(shù),實(shí)驗(yàn)驗(yàn)證了四種控制器對車架-駕駛室系統(tǒng)和車架-駕駛室-座椅系統(tǒng)的振動(dòng)控制效果。實(shí)驗(yàn)結(jié)果表明,相比于不考慮時(shí)滯的天棚阻尼控制器和狀態(tài)反饋?zhàn)顑?yōu)控制器,自適應(yīng)天棚控制器和時(shí)滯最優(yōu)控制器具有更高的控制效率和更好的舒適性。為進(jìn)一步研究半主動(dòng)控制算法在實(shí)際駕駛室懸置系統(tǒng)中的有效性,利用實(shí)際重卡進(jìn)行路面實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明相比于被動(dòng)方式,兩種半主動(dòng)控制方法均能有效的抑制或隔離駕駛室座椅處的振動(dòng),其中最優(yōu)控制的整體效果較好。本文以基于MRD的重卡駕駛室懸置為研究對象,分析并建立了MRD的瞬態(tài)動(dòng)力模型并提出控制方法,并研究時(shí)滯對傳統(tǒng)半主動(dòng)控制算法的影響。研究含時(shí)滯補(bǔ)償?shù)陌胫鲃?dòng)控制方法,并進(jìn)行仿真和實(shí)驗(yàn)驗(yàn)證,為MRD在重卡駕駛室半主動(dòng)懸置系統(tǒng)中的應(yīng)用提供了理論和實(shí)驗(yàn)基礎(chǔ)。
[Abstract]:In recent years, with the rapid development of electronic commerce in China, the demand for freight logistics is increasing. However, in the long time of transportation, the vibration of the heavy truck driver is directly affected by the driver's physical and mental health and transportation safety. The magnetorheological damper (MRD) is a highly efficient and semi-active control of the vibration. The device has the advantages of simple and reliable structure, great power, strong anti-interference ability and low energy consumption. It is a hot spot in the field of application of vibration control. Based on the magnetorheological damper, this paper studies some problems in the vibration control of the semi-active suspension of the full floating heavy truck cab. The complex nonlinear physical characteristics of MRD have been established. The accurate control model and the design of efficient semi-active controller are difficult, which is also the hot spot of scholars at home and abroad. At present, the vibration semi-active control system based on MRD mostly adopts the ceiling control strategy and the intelligent control algorithm. However, the control precision and the response speed of the ceiling control strategy and the intelligent control algorithm are in the control precision and the response speed. There are natural defects. Both electromagnetic and fluid driven MRD contain unnegligible time-delay, and this will also reduce and even deteriorate the effect of vibration semi-active control. This paper studies the problems existing in the current vibration semi-active control. The paper first discusses the establishment of the dynamic model of MRD under the steady current input. In the establishment of MRD steady current dynamic model, based on the test data of MRD dynamic characteristics of cab suspension, the dynamic model of the traditional MRD is studied. On the basis of the analysis of the dynamic characteristic curve of MRD, a mechanical delay model considering mechanical flexibility and assembly gap is put forward. The results show that the mechanical lag model based on the Tanh function has the highest comprehensive precision, while the simplified Tanh function model is convenient to solve the inverse function and also has high accuracy. Based on the mechanical lag model, the effect of the mechanical system flexibility and clearance on the transient response characteristics of the MRD is analyzed. The circuit theory is used to predict the current source drive. The response time of MRD current in mode and voltage source driven mode. The step current response test is carried out for the cab suspension with MRD, and the effect of speed and driving current amplitude on the response time of MRD is studied. The numerical simulation results show that the MRD time-delay model can explain the response characteristic of MRD damping force with the current transient change better. Based on the MRD motion. A method of linearization of magnetorheological damping force is proposed. The damping force of MRD is decomposed. The simplified Tanh function model is decomposed and its inverse function is solved. The inverse function is connected to MRD to control the current input channel. By introducing the closed loop control strategy, the MRD Coulomb force and the viscous damping force are approximately linearized. The foundation of the design and analysis of the active control system is laid. Based on the simplified Tanh function model of MRD, the vibration transfer characteristics of two kinds of 1/4 cab semi-active suspension systems (the frame - cab system and the frame - cab seat system) are studied. Based on the characteristics of the vibration semi-active control, and based on the vibration transfer characteristics, the vibration isolation and suppression are proposed. Based on this criterion, the effect of time delay on the control effect of the canopy damping and the state feedback optimal control is studied. The results show that the time delay can affect the control and shape of the canopy damping to varying degrees for the frame - cab system and the frame - cab seat system. The effect of state feedback optimal control on vibration control. Among them, the effect of time delay on the canopy damping control is more significant. Based on the Smith prediction compensation, the adaptive canopy controller with variable time delay compensation is designed. The time delay optimal controller based on the state feedback optimal control is derived and designed, and the time delay expression of MRD is expressed. The time-delay compensation link is introduced to obtain a time-delay optimal controller with variable delay. The simulation evaluation of two 1/4 cab suspension systems shows that the adaptive canopy controller and the time delay optimal controller can reduce the effect of time delay on the control system well. The 10 degree of freedom dynamics of the heavy truck cab suspension system is established. An adaptive PID controller, an adaptive canopy damping controller and a time-delay optimal controller are studied and designed. The simulation studies the transmission characteristics of the suspension system under the failure of the controller. The results show that, although the comfort degree of the heavy card cab suspension system is reduced in the three failure modes, it does not appear to be unstable. True calculation, the effect of three controllers on the vibration control of the semi-active suspension system of heavy truck cab is evaluated. The results show that in the three control algorithms, the optimal time delay control effect is the best, followed by adaptive PID control and adaptive canopy damping control, but the difference is not significant. Finally, a set of 1/4 cabs is set up. The suspension system experiment platform, based on the Matlab rapid control prototype development technology, verified the vibration control effect of four controllers to the frame cab system and the frame and cab seat system. The experimental results show that the adaptive canopy controller and the adaptive canopy controller are compared to the time lag damper controller and the state feedback optimal controller. The time delay optimal controller has higher control efficiency and better comfort. In order to further study the effectiveness of the semi-active control algorithm in the actual cab suspension system, the practical heavy truck is used to carry out the pavement experiment. The experimental results show that the two semi-active control methods can effectively suppress or isolate the cabs compared to the passive way. In this paper, the overall effect of the optimal control is better. This paper takes the MRD based heavy card cab suspension as the research object, analyzes and establishes the transient dynamic model of the MRD and puts forward the control method, and studies the influence of the time delay on the traditional semi-active control algorithm. And experimental verification, which provides a theoretical and experimental basis for the application of MRD in the semi-active suspension system of heavy truck cab.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:U463.81
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡海巖,郭大蕾,翁建生;振動(dòng)半主動(dòng)控制技術(shù)的進(jìn)展[J];振動(dòng)、測試與診斷;2001年04期
2 徐建功,王肇民,何玉敖;基于預(yù)測控制的結(jié)構(gòu)振動(dòng)半主動(dòng)控制研究[J];世界地震工程;2003年02期
3 趙有澤;;半主動(dòng)控制的國內(nèi)外研究現(xiàn)狀[J];山西建筑;2010年17期
4 丁于強(qiáng);劉齊茂;;工程結(jié)構(gòu)振動(dòng)半主動(dòng)控制發(fā)展現(xiàn)狀與前景[J];湖南工業(yè)大學(xué)學(xué)報(bào);2010年05期
5 楊智春,趙令誠,姜節(jié)勝;結(jié)構(gòu)非線性顫振半主動(dòng)控制的理論及實(shí)驗(yàn)研究[J];航空學(xué)報(bào);1993年11期
6 劉季,孫作玉;結(jié)構(gòu)可變阻尼半主動(dòng)控制[J];地震工程與工程振動(dòng);1997年02期
7 何琦,何玉敖;毗鄰結(jié)構(gòu)變剛度變阻尼半主動(dòng)控制[J];振動(dòng)工程學(xué)報(bào);2002年04期
8 孫清,伍曉紅,戴紅,范健,周進(jìn)雄,張陵;結(jié)構(gòu)振動(dòng)半主動(dòng)控制系統(tǒng)的時(shí)滯補(bǔ)償研究[J];機(jī)械科學(xué)與技術(shù);2005年05期
9 孟慶利;張敏政;;基于模式識別的模糊半主動(dòng)控制策略[J];地震工程與工程振動(dòng);2005年06期
10 趙林;結(jié)構(gòu)振動(dòng)半主動(dòng)控制的實(shí)用性研究[J];工程抗震與加固改造;2005年02期
相關(guān)會(huì)議論文 前10條
1 何玉敖;何亞東;;瞬時(shí)最優(yōu)半主動(dòng)控制[A];第九屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅲ卷[C];2000年
2 劉棟棟;李淑玉;;H_∞優(yōu)化控制理論在半主動(dòng)控制中的應(yīng)用[A];第八屆全國振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集摘要[C];2003年
3 程傳輝;劉清良;邱國興;;結(jié)構(gòu)振動(dòng)半主動(dòng)控制的實(shí)用性研究[A];河南省建筑業(yè)行業(yè)優(yōu)秀論文集(2008)[C];2008年
4 孫清;伍曉紅;劉正偉;李鵬;;結(jié)構(gòu)振動(dòng)半主動(dòng)控制的時(shí)滯效應(yīng)[A];第17屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅲ冊)[C];2008年
5 陳勇;虞雅梅;樓文娟;孫炳楠;;基于時(shí)間離散模型的斜拉索振動(dòng)半主動(dòng)控制[A];計(jì)算機(jī)技術(shù)在工程建設(shè)中的應(yīng)用——第十一屆全國工程建設(shè)計(jì)算機(jī)應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2002年
6 彭文韜;徐家云;李桂青;;半主動(dòng)控制結(jié)構(gòu)設(shè)計(jì)的研究[A];第三屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(下)[C];1994年
7 董宏英;霍達(dá);徐寧壽;李云棟;;考慮時(shí)延的內(nèi)置經(jīng)絡(luò)系統(tǒng)半主動(dòng)控制研究[A];第十屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅲ卷[C];2001年
8 梅真;;磁流變阻尼半主動(dòng)控制系統(tǒng)的可靠性研究[A];中國力學(xué)大會(huì)——2013論文摘要集[C];2013年
9 張巍;李江;何玉敖;;半主動(dòng)控制與被動(dòng)耗能減振控制比較研究[A];第十二屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅱ冊[C];2003年
10 李杰;陳建兵;彭勇波;;半主動(dòng)隨機(jī)最優(yōu)控制系統(tǒng)的密度演化分析[A];隨機(jī)振動(dòng)理論與應(yīng)用新進(jìn)展——第六屆全國隨機(jī)振動(dòng)理論與應(yīng)用學(xué)術(shù)會(huì)議論文摘要集[C];2008年
相關(guān)博士學(xué)位論文 前5條
1 黃山云;含磁流變阻尼器重卡駕駛室懸置系統(tǒng)的半主動(dòng)控制研究[D];哈爾濱工業(yè)大學(xué);2015年
2 林偉;多維多點(diǎn)地震激勵(lì)的大跨度空間結(jié)構(gòu)磁流變阻尼器半主動(dòng)控制[D];天津大學(xué);2009年
3 李秀領(lǐng);非對稱建筑結(jié)構(gòu)的磁流變阻尼器半主動(dòng)控制[D];大連理工大學(xué);2006年
4 亓興軍;橋梁減震半主動(dòng)控制研究[D];中國地震局地球物理研究所;2006年
5 李江;高層建筑結(jié)構(gòu)振動(dòng)半主動(dòng)控制系統(tǒng)研究[D];天津大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 何發(fā)勝;高速列車動(dòng)力學(xué)性能半主動(dòng)控制研究[D];西南交通大學(xué);2015年
2 何路;基于蟻群算法的結(jié)構(gòu)半主動(dòng)控制分析[D];華中科技大學(xué);2013年
3 趙永春;基于壓電材料的懸臂梁振動(dòng)半主動(dòng)控制研究[D];南京航空航天大學(xué);2009年
4 趙亞平;利用壓電材料的振動(dòng)能量收集及半主動(dòng)控制研究[D];南京航空航天大學(xué);2014年
5 劉建軍;建筑結(jié)構(gòu)半主動(dòng)控制系統(tǒng)理論研究[D];天津大學(xué);2004年
6 許祖德;結(jié)構(gòu)振動(dòng)半主動(dòng)控制分析及仿真程序研究[D];華中科技大學(xué);2012年
7 祝輝;彈塑性結(jié)構(gòu)的主動(dòng)和半主動(dòng)控制研究[D];重慶大學(xué);2009年
8 馮中杰;相鄰結(jié)構(gòu)體系的主動(dòng)和半主動(dòng)控制研究[D];重慶大學(xué);2010年
9 楊曉;電動(dòng)汽車半主動(dòng)控制懸架試驗(yàn)研究[D];華北理工大學(xué);2015年
10 張軍;發(fā)動(dòng)機(jī)振動(dòng)及半主動(dòng)控制技術(shù)研究[D];華北工學(xué)院;2002年
,本文編號:1891115
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1891115.html