大數(shù)據(jù)時(shí)代港口貨運(yùn)統(tǒng)計(jì)決策支持系統(tǒng)研究
發(fā)布時(shí)間:2018-03-03 16:54
本文選題:港口統(tǒng)計(jì) 切入點(diǎn):大數(shù)據(jù) 出處:《北京交通大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:港口作為貨物貿(mào)易主要的集散地,在世界物流中扮演者重要的角色。在港口企業(yè)中,數(shù)據(jù)的整理以及呈現(xiàn)主要由統(tǒng)計(jì)系統(tǒng)來(lái)完成。隨著大數(shù)據(jù)時(shí)代的到來(lái),港口企業(yè)的統(tǒng)計(jì)系統(tǒng)面臨著新的挑戰(zhàn):以往的統(tǒng)計(jì)系統(tǒng)只是對(duì)數(shù)據(jù)進(jìn)行整理和收集之后,對(duì)數(shù)據(jù)進(jìn)行加工轉(zhuǎn)化,然后生成所需要的報(bào)表,流程比較復(fù)雜,管理層在短時(shí)間內(nèi)不能及時(shí)查看匯總數(shù)據(jù)。另外,系統(tǒng)只通過(guò)處理內(nèi)部數(shù)據(jù)并進(jìn)行對(duì)比分析,全面性不能保證。因此,需要建立一個(gè)全面性、實(shí)時(shí)性、有效性的港口統(tǒng)計(jì)系統(tǒng)。隨著大數(shù)據(jù)時(shí)代的到來(lái),港口企業(yè)對(duì)統(tǒng)計(jì)系統(tǒng)所能實(shí)現(xiàn)的功能要求越來(lái)越高,系統(tǒng)隨之面臨的問(wèn)題也越來(lái)越多:如何獲取紛繁復(fù)雜的數(shù)據(jù)信息;如何更加直觀清晰的查看數(shù)據(jù);如何在內(nèi)部數(shù)據(jù)基礎(chǔ)上結(jié)合外部數(shù)據(jù)分析港口各指標(biāo)的變化情況。為了解決以上的問(wèn)題,使統(tǒng)計(jì)系統(tǒng)能夠作為輔助角色為企業(yè)提供有價(jià)值的信息,使企業(yè)在同行業(yè)的競(jìng)爭(zhēng)中獲取最大的效益,本文提出貨運(yùn)統(tǒng)計(jì)決策支持系統(tǒng)研究。首先介紹目前廣州港集團(tuán)的系統(tǒng)功能及實(shí)施應(yīng)用情況,然后介紹目前港口企業(yè)統(tǒng)計(jì)存在的問(wèn)題以及港口企業(yè)的業(yè)務(wù)需求,從而確定各類統(tǒng)計(jì)指標(biāo)。接著進(jìn)行數(shù)據(jù)的采集處理,最后對(duì)港口企業(yè)統(tǒng)計(jì)系統(tǒng)進(jìn)行優(yōu)化設(shè)計(jì)。針對(duì)不同的影響指標(biāo),根據(jù)所得底層數(shù)據(jù)對(duì)各指標(biāo)進(jìn)行實(shí)時(shí)性的計(jì)算查詢,同時(shí)對(duì)影響指標(biāo)進(jìn)行分析并預(yù)測(cè)未來(lái)數(shù)據(jù)。旨在大數(shù)據(jù)環(huán)境下對(duì)港口企業(yè)統(tǒng)計(jì)進(jìn)行系統(tǒng)研究,分析各指標(biāo)因素變化情況,使港口數(shù)據(jù)在大數(shù)據(jù)環(huán)境下變得更精準(zhǔn)、更時(shí)效,為港口企業(yè)制定相應(yīng)的戰(zhàn)略提供很好的依據(jù)。最后進(jìn)行全文總結(jié)及研究展望。
[Abstract]:As the main distribution center of goods trade, the port plays an important role in the world logistics. In the port enterprises, the data collation and presentation are mainly completed by the statistical system. With the arrival of big data era, The statistical system of port enterprises is faced with new challenges: the former statistical system only collates and collects the data, then processes and transforms the data, and then generates the required reports. The process is quite complex. Management can not view the summary data in a short period of time. In addition, the system can only process internal data and conduct comparative analysis, comprehensiveness is not guaranteed. Therefore, it is necessary to establish a comprehensive and real-time system. Effective port statistical system. With the arrival of big data era, port enterprises have higher and higher functional requirements for the statistical system, the system is facing more and more problems: how to obtain complex data information; How to view the data more intuitively and clearly; how to analyze the changes of the port indexes on the basis of internal data and external data. To enable statistical systems to provide valuable information to enterprises as a supporting role and to maximize the benefits of competition in the same industry, This paper puts forward the research on the decision support system of cargo statistics. Firstly, it introduces the system function and application of Guangzhou Port Group, and then introduces the problems existing in the statistics of port enterprises and the business needs of port enterprises. In order to determine all kinds of statistical indicators. Then the data collection and processing, finally the port enterprise statistical system optimization design. According to different impact indicators, according to the bottom data obtained real-time calculation of each index query, At the same time, we analyze the impact indicators and predict the future data. The purpose of this paper is to make a systematic study on port enterprise statistics under the environment of big data, to analyze the changes of various index factors, so as to make the port data more accurate and time-efficient in the environment of big data. To provide a good basis for port enterprises to formulate the corresponding strategy. Finally, the full text summary and research prospects.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F552
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程艷云;張守超;楊楊;;基于大數(shù)據(jù)的時(shí)間序列異常點(diǎn)檢測(cè)研究[J];計(jì)算機(jī)技術(shù)與發(fā)展;2016年05期
2 徐凱;郭勝童;彭,
本文編號(hào):1561889
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1561889.html
最近更新
教材專著