基于前景理論的B2C消費者行為決策模型研究
本文關鍵詞: 決策模型 前景理論 B2C電子商務 網(wǎng)絡口碑 出處:《華南理工大學》2015年碩士論文 論文類型:學位論文
【摘要】:隨著電子商務的蓬勃發(fā)展,網(wǎng)絡消費者表現(xiàn)出了愈來愈多的與以往不同的行為特征。如:隨著“雙11”活動越來越被消費者期待和認同,在活動開展的過程中,存在大量網(wǎng)絡消費者熬夜刷單、沖動消費(“剁手族”)、節(jié)后大量退貨等行為。這些行為在一定程度上反映了網(wǎng)絡消費者行為決策過程中的“有限理性”甚至是“非理性”的特點。因此,針對當前網(wǎng)絡消費者的行為特征,本研究的目的在于:能夠合理地對網(wǎng)絡購物消費者“有限理性”或“非理性”行為決策過程進行正確的建模,從而為企業(yè)開展運營管理及服務營銷管理提供切實可行的建議。本研究主要內容包括:(1)網(wǎng)絡購物情境下的消費者行為決策研究及建模。運用服務藍圖法確定服務流程各階段,將B2C電子商務服務流程分為決策、通達、交易、支付、物流和售后6個子流程階段;針對各個流程中的顧客行為決策建立價值函數(shù)、權重函數(shù)及前景函數(shù);通過引入直覺模糊數(shù)以完善數(shù)學模型;最后,通過定義多屬性決策問題,確定了京東、1號店和當當為備選方案集及相對應的決策指標屬性的結構。(2)基于網(wǎng)絡口碑的決策模型定量化。在已建立的行為決策模型的基礎上,通過挖掘網(wǎng)絡口碑定量表示決策模型。首先,使用java編程語言,按照服務流程進行網(wǎng)絡口碑的分類,實現(xiàn)了基于SVM算法的網(wǎng)絡口碑服務流程分類模型;分類完成后,調用weka數(shù)據(jù)分析工具,對類內的網(wǎng)絡口碑進行聚類分析。主要運用EM算法,確定了類內聚類的簇數(shù)(即指標數(shù)),并輔助QFD調研方法確定各個類中子決策指標權重。經(jīng)過聚類后,各個子流程共得到13個決策指標;進一步使用ROST情感分析工具對網(wǎng)絡口碑進行情感評分,依據(jù)打分結果,按照情感正負極性分為兩類評價結果,并按照情感傾向程度的不同轉化為直覺三角模糊數(shù),從而實現(xiàn)模型的定量化。(3)基于前景理論的B2C消費者行為決策模型算例分析。對決策模型進行計算,主要應用了直覺三角模糊數(shù)的相關運算性質,求出各個屬性下的前景值并得出綜合前景值。通過與期望效用理論構建的決策行為模型進行比較,發(fā)現(xiàn)本文構建的基于前景理論的行為決策模型能更貼近實際情況。此外,通過對結果進行排序分析,討論各個備選方案的優(yōu)劣程度,得到各個備選方案的管理啟示。研究結果表明:(1)總體上,京東商城綜合前景得分最高,1號店次之,當當網(wǎng)最低。但分析累積綜合得分發(fā)現(xiàn),1號店在前期服務水平落后于當當網(wǎng)的情況下,通過后階段高水平的服務提供,在總得分上超過了當當網(wǎng),這對企業(yè)如何實現(xiàn)服務補救具有參考價值;(2網(wǎng)絡口碑的聚類分析得到了13個評價指標,在這些指標中,京東商城在其中7個指標上前景值最優(yōu),1號店有4個前景值最優(yōu)。京東商城雖然得分最高,但其售后服務階段的得分卻低于其余兩者,導致總得分差距亦被縮小。而1號店最初得分較低,但通過出色的服務補救,最終得分排名第二。這充分說明,良好的服務補救策略對提升企業(yè)服務質量具有重要的作用。
[Abstract]:With the rapid development of e-commerce, online consumers show different behavior characteristics more and more. Such as: with the "double 11" activities, more and more consumers expect and accept, in the course of activities carried out, there are a large number of network consumers stay single brush, impulsive consumption (chop hand family), after a large number of return behavior. These behaviors in a certain extent reflects the network consumer behavior in the decision-making process of "limited rationality" and "irrational" characteristics. Therefore, according to the behavior characteristics of the current network of consumers, the purpose of this research is to reasonably correct modeling of the decision making process of the online shopping consumer "limited rationality" or "irrational" behavior, so as to provide feasible suggestions for enterprises to carry out operations management and service marketing management. The main contents of this research include: (1) the network shopping situation Consumer behavior research and decision modeling. To determine the stage of service process by using service blueprint, B2C e-commerce service process is divided into decision-making, access, transaction, payment, logistics and customer service of 6 sub process; the decision of customer behavior in the process of establishing the value of each function, weight function and function by introducing the prospect; hundreds of perfect intuitionistic fuzzy mathematical model; finally, through the definition of multiple attribute decision making problems, determine the structure of Jingdong, and the corresponding decision attribute and Dangdang Shop No. 1 set for alternatives. (2) quantitative decision model based on the word-of-mouth network. Based on the behavior decision model has been established on the mining IWOM quantitative representation decision model. Firstly, using the Java programming language, the classification of word of mouth network according to the service process, the realization of the SVM algorithm of network flow classification model based on reputation service points; The class is completed, call the Weka data analysis tools, internet word-of-mouth on intra class cluster analysis. The main use of EM algorithm to determine the number of clusters within class clustering (i.e. index number), and make sure each kind of neutron decision index weight assisted QFD research methods. After clustering, the sub process there are 13 decision ROST index; the further use of sentiment analysis tools emotional score on the network reputation, according to evaluation results, according to the polarity of the emotion is divided into two categories according to the evaluation results, and different degree of transformation sentiment intuitionistic triangular fuzzy number, so as to realize the quantitative model. (3) cases based on the B2C consumer behavior decision model prospect theory. The decision model is calculated, the main application of the correlation algorithm of triangle intuitionistic fuzzy number, calculated each attribute the prospect value and the result of comprehensive prospect value. With the expected utility theory Compare the decision behavior model, found the behavior decision model of prospect theory based on more practical built in this paper. In addition, sorting through analysis of the results, discuss the extent of the various alternatives, get the management implications of various options. The results show that: (1) overall, the Jingdong mall comprehensive prospect the highest score, 1 stores and the lowest dangdang.com. But analysis of cumulative score, shop No. 1 in the pre service level behind the dangdang.com case, by providing a high level of service after the stage, in the total score more than that of dangdang.com, enterprise how to implement service recovery has the reference value; (cluster analysis of 2 online word-of-mouth got 13 evaluation indexes in these indicators, the 7 indicators in the mall Jingdong to view the optimal value, shop No. 1 has 4 prospect value optimization. Although most score mall Jingdong High, but its customer service service stage is lower than that of the rest of the two scores, resulting in a total score gap was also reduced. The No. 1 shop was originally a low score, but through excellent service recovery, the final score ranked second. This shows that the good service recovery strategy plays an important role in promoting enterprise service quality.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:F713.55
【參考文獻】
相關期刊論文 前10條
1 董大海;劉琰;;口碑、網(wǎng)絡口碑與鼠碑辨析[J];管理學報;2012年03期
2 常娟;;針對短文本數(shù)據(jù)的自動分類方法比較研究[J];消費導刊;2008年04期
3 張多蕾;王治;;預期效用理論與前景理論的比較研究[J];黑龍江對外經(jīng)貿;2009年11期
4 金立印;;網(wǎng)絡口碑信息對消費者購買決策的影響:一個實驗研究[J];經(jīng)濟管理;2007年22期
5 施聰鶯;徐朝軍;楊曉江;;TFIDF算法研究綜述[J];計算機應用;2009年S1期
6 王堅強;張忠;;基于直覺模糊數(shù)的信息不完全的多準則規(guī)劃方法[J];控制與決策;2008年10期
7 劉鋒;袁學海;;模糊數(shù)直覺模糊集[J];模糊系統(tǒng)與數(shù)學;2007年01期
8 洪志生;霍佳震;蘇強;;單次服務過程中新老顧客質量感知波動的差異分析[J];南開管理評論;2013年03期
9 吳鴿;周晶;雷麗彩;;行為決策理論綜述[J];南京工業(yè)大學學報(社會科學版);2013年03期
10 左文明;王旭;樊償;;社會化電子商務環(huán)境下基于社會資本的網(wǎng)絡口碑與購買意愿關系[J];南開管理評論;2014年04期
相關博士學位論文 前3條
1 畢繼東;負面網(wǎng)絡口碑對消費者行為意愿的影響研究[D];山東大學;2010年
2 陳雯;基于策略消費者行為的供應鏈運作與協(xié)調研究[D];華中科技大學;2012年
3 李喜華;基于前景理論的復雜大群體直覺模糊多屬性決策方法[D];中南大學;2012年
,本文編號:1548947
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1548947.html