漿態(tài)床一步法合成二甲醚能耗分析與優(yōu)化
本文關鍵詞: 漿態(tài)床 二甲醚 流程模擬 分析 熱量分析 出處:《太原理工大學》2015年碩士論文 論文類型:學位論文
【摘要】:隨著大規(guī)模、不合理的使用化石資源,對人類生存環(huán)境造成極大的破壞,并導致大量的污染物和溫室氣體的排放,發(fā)展煤基合成燃料是我國能源利用方式的新主題,漿態(tài)床一步法合成二甲醚系統(tǒng)具有流程短、設備投資少、能耗低、一氧化碳單程轉化率高等特點,已成為目前煤化工的重點發(fā)展方向。 本文應用Aspen Plus過程模擬軟件對漿態(tài)床一步法合成二甲醚系統(tǒng)進行工藝流程模擬。在采集大量文獻數(shù)據(jù)對Aspen Plus模擬環(huán)境進行校核的基礎上,研究煤基合成氣合成二甲醚系統(tǒng)、二甲醚-電聯(lián)產(chǎn)系統(tǒng)、二甲醚精餾系統(tǒng),并驗證了模型的有效性。分析了二甲醚-電聯(lián)產(chǎn)系統(tǒng)的循環(huán)比對系統(tǒng)能耗的影響,確定了其最佳循環(huán)比為1.5;同時分析了二甲醚精餾過程中可能的分離序列對精餾系統(tǒng)能耗的影響,確定了其最佳精餾分離序列的分離順序為先分離水、再分離甲醇、最后分離二氧化碳和二甲醚。 在分析的基礎上,運用熱量方法和方法對漿態(tài)床一步法合成二甲醚系統(tǒng)進行詳細的熱量計算和計算,并得到該系統(tǒng)的能流圖和流圖。模擬計算結果顯示:熱量方法得出二甲醚的轉化效率為47.16%、甲醇轉化效率為6.37%、電量的轉化效率為3.47%;換熱后的蒸汽和冷卻水的熱量損耗為20.21%,無效產(chǎn)品(精餾段分離出的二氧化碳和余熱鍋爐段做完功的煙氣)的熱量損耗為7.42%。各流程段熱損耗之和為15.66%,其中反應換熱、精餾過程以及余熱鍋爐發(fā)電過程的熱量損耗較大。方法計算得出二甲醚的轉化效率為39.03%、甲醇的轉化效率為5.29%、電量的轉化效率為2.64%;換熱后的蒸汽和冷卻水的損耗為4.38%;無效產(chǎn)品的損耗為3.71%;各模擬單元換熱的損耗之和為20.18%,,設備的損耗為3.01%,物流混合和分流過程的損耗為0.38%,發(fā)電單元的損耗為3.87%,二甲醚精餾單元的損耗為17.51%。精餾過程和反應換熱過程需要供能的品質較高,造成損耗較大,如果合理分配這部分能量,不僅減少了高品質的輸入,而且提高了換熱后能量的利用率,從而降低損,提高效率。 綜合兩種分析結果可知,二甲醚精餾過程和系統(tǒng)換熱過程中造成損失較大,亟需實現(xiàn)系統(tǒng)的熱集成,使能量合理的分配,提高能量的利用效率。做完功的煙氣以及精餾出的二氧化碳,能量損耗較大,但其做功能力較低,提高經(jīng)濟效益的效果不明顯。
[Abstract]:With the large-scale, irrational use of fossil resources, the human survival environment caused great damage, and lead to a large number of pollutants and greenhouse gas emissions. The development of coal-based synthetic fuel is a new topic of energy utilization in China. The slurry bed one-step synthesis system of DME has the characteristics of short process, low investment in equipment, low energy consumption and high conversion rate of carbon monoxide. It has become the key development direction of coal chemical industry. In this paper, Aspen Plus process simulation software is used to simulate the process flow of slurry bed one-step synthetic dimethyl ether system. A large amount of literature data are collected for Aspen. Plus simulation environment based on the verification. The synthesis system of dimethyl ether from coal-based syngas, the system of dimethyl ether-electric cogeneration and the system of dimethyl ether rectification were studied. The validity of the model was verified. The effect of cycle ratio on the energy consumption of the system was analyzed. The optimum cycle ratio is 1.5. At the same time, the influence of the possible separation sequence on the energy consumption of the distillation system was analyzed, and the separation order of the optimal distillation separation sequence was determined as the separation of water first, and then methanol. Finally, carbon dioxide and dimethyl ether were separated. On the basis of the analysis, the heat calculation and calculation of the slurry bed one-step synthetic DME system are carried out by using the heat method and method. The energy flow diagram and flow diagram of the system are obtained. The simulation results show that the conversion efficiency of dimethyl ether is 47.16 and that of methanol is 6.37% by caloric method. The conversion efficiency of electricity is 3.47; The heat loss of steam and cooling water after heat transfer is 20.21%. The heat loss of ineffective products (carbon dioxide separated from distillation section and waste heat boiler flue gas) is 7.422.The sum of heat loss of each process section is 15.66, in which reaction heat transfer. The conversion efficiency of dimethyl ether and methanol is 39.03 and 5.29% respectively. The conversion efficiency of electricity is 2.64; The loss of steam and cooling water after heat transfer is 4.38. The loss of invalid product is 3.71%; The sum of heat transfer loss of each analog unit is 20.18, the loss of equipment is 3.01, the loss of material flow mixing and shunt is 0.38, and the loss of power generation unit is 3.87%. The loss of dimethyl ether distillation unit is 17.51. The quality of energy supply is high in distillation process and reaction heat transfer process, which results in a large loss. If this part of energy is reasonably distributed, the high quality input will not only be reduced. Moreover, the utilization rate of energy after heat transfer is improved, thus reducing the loss and improving the efficiency. Combined with the results of two kinds of analysis, it can be concluded that the dimethyl ether distillation process and the heat transfer process of the system cause great losses, so it is urgent to realize the thermal integration of the system so as to make the energy distribution reasonable. The energy loss of the flue gas and the carbon dioxide produced by rectification is large, but its work capacity is low, and the effect of improving economic benefit is not obvious.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TQ223.24
【參考文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 麻林巍,倪維斗,李政,任挺進;以煤氣化為核心的甲醇、電的多聯(lián)產(chǎn)系統(tǒng)分析(上)[J];動力工程;2004年03期
2 麻林巍,倪維斗,李政,任挺進;以煤氣化為核心的甲醇、電的多聯(lián)產(chǎn)系統(tǒng)分析(下)[J];動力工程;2004年04期
3 陳斌;金紅光;高林;;二甲醚分產(chǎn)及二甲醚-動力聯(lián)產(chǎn)的比較[J];工程熱物理學報;2006年05期
4 王和平;合成氣一步法制二甲醚工藝及催化劑研究進展[J];工業(yè)催化;2003年05期
5 趙毅;吳雪梅;潘艷秋;賀高紅;孫力;;精餾操作型問題的討論[J];化工高等教育;2008年05期
6 楊立新,徐紅燕;二甲醚生產(chǎn)技術及應用前景[J];化工進展;2003年02期
7 黎漢生,任飛,王金福;漿態(tài)床一步法二甲醚產(chǎn)業(yè)化技術開發(fā)研究進展[J];化工進展;2004年09期
8 康舉;韓利華;梁英華;;二甲醚生產(chǎn)工藝技術進展[J];河北化工;2007年11期
9 張海濤,曹發(fā)海,劉殿華,房鼎業(yè);合成氣直接合成二甲醚與甲醇的熱力學分析[J];華東理工大學學報;2001年02期
10 韓媛媛;應衛(wèi)勇;房鼎業(yè);;二甲醚精制分離序列的動態(tài)規(guī)劃[J];華僑大學學報(自然科學版);2010年01期
中國博士學位論文全文數(shù)據(jù)庫 前1條
1 喬英云;合成氣一步法直接合成二甲醚分離工藝和分離設備的研究[D];太原理工大學;2010年
本文編號:1481241
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1481241.html