生物沼氣生產(chǎn)利用系統(tǒng)建模分析及可持續(xù)性評價
本文關(guān)鍵詞: 生物沼氣 生物甲烷 系統(tǒng)建模 單元模擬分析 系統(tǒng)綜合評價 出處:《中國科學(xué)院研究生院(過程工程研究所)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:生物質(zhì)廢棄物通過厭氧發(fā)酵方式生產(chǎn)生物沼氣是生物質(zhì)高效資源化利用的重要手段之一,具有經(jīng)濟(jì)和環(huán)境的雙重效益,是可再生能源領(lǐng)域的研究熱點。現(xiàn)有研究主要針對生物質(zhì)的厭氧發(fā)酵及生物沼氣的利用等關(guān)鍵單元技術(shù),從全系統(tǒng)角度的研究較為缺乏,而該體系涉及多種技術(shù)、多個單元過程以及多種影響評價指標(biāo),是一個復(fù)雜拓?fù)渚W(wǎng)絡(luò)系統(tǒng)評價問題。因此,需要借助系統(tǒng)工程的方法對該復(fù)雜系統(tǒng)進(jìn)行深入剖析,了解各單元及變量對系統(tǒng)性能影響的機(jī)制,并對影響系統(tǒng)效率的多種技術(shù)采用多種指標(biāo)進(jìn)行綜合評價,篩選出具有代表性的可持續(xù)發(fā)展路線為生物沼氣技術(shù)的大規(guī)模應(yīng)用提供指導(dǎo);谏鲜霰尘,本文對生物沼氣全系統(tǒng)進(jìn)行了能量、環(huán)境及經(jīng)濟(jì)綜合評價,并對系統(tǒng)中的沼氣提純及厭氧發(fā)酵關(guān)鍵單元進(jìn)行了建模與能耗分析。主要研究內(nèi)容與成果如下:(1)針對粗沼氣提純分離單元,開展了變壓吸附法(PSA)粗生物沼氣提純制備生物甲烷工藝的動態(tài)模擬與評價研究。分別以13X沸石(Zeolite 13X)、3K碳分子篩(CMS-3K)和508b金屬有機(jī)骨架材料(MOF-508b)為吸附劑,建立了兩塔-六步的改進(jìn)Skarstrom動態(tài)變壓吸附模擬流程,對變壓吸附過程的關(guān)鍵參數(shù)如吸脫附壓力、進(jìn)料吹掃比等進(jìn)行了靈敏度分析,確定了優(yōu)化工藝參數(shù);考察了吸附塔內(nèi)的壓力、CH4及CO2組分的濃度隨塔高及循環(huán)時間的變化:對三種吸附劑裝填條件下工藝過程的能耗、設(shè)備尺寸及吸附劑裝填量進(jìn)行了計算與比較。結(jié)果表明,采用MOF-508b和CMS-3K作為吸附劑時的工藝能耗比Zeolite 13X作為吸附劑時分別低56%和50%;MOF-508b及CMS-3K填充的吸附塔塔徑比Zeolite 13X填充的吸附塔塔徑分別小13%和27%。(2)針對生物質(zhì)厭氧發(fā)酵單元,建立了容積產(chǎn)氣率及單元的熱平衡模型。對中溫35℃和高溫55℃厭氧發(fā)酵狀態(tài),根據(jù)實驗數(shù)據(jù)擬合了三種二元共發(fā)酵體系(牛糞與秸稈、雞糞與秸稈、人糞與秸稈)的容積產(chǎn)氣率模型,模型預(yù)測結(jié)果與實驗結(jié)果平均偏差在7%以內(nèi)。對熱平衡模型,考察了沼液低溫余熱的回收對減少過程外供熱量的影響。結(jié)果表明,發(fā)酵過程所需熱量的約89%用于加熱進(jìn)口的冷物料,而約11%用于維持發(fā)酵罐的恒溫。因此,對沼液的低溫余熱加以回收以減少過程熱量供給是十分必要的。以沼氣鍋爐供熱發(fā)酵罐方式為例,通過沼液余熱回收,在中溫發(fā)酵和高溫發(fā)酵狀態(tài)下,每天可以分別減少42%和49%的沼氣消耗。(3)針對生物甲烷生產(chǎn)全系統(tǒng),開展了物流與能量分析研究。在單元過程模擬基礎(chǔ)上,建立了該系統(tǒng)的能耗模型和能量效率評價指標(biāo)?紤]了2種發(fā)酵技術(shù)、4種粗沼氣提純技術(shù)、2種系統(tǒng)熱量供給及是否進(jìn)行沼液低溫余熱的利用等因素,設(shè)計了32種情景路線:考察了發(fā)酵溫度、系統(tǒng)熱量供給方式及沼液低溫余熱回收模式對系統(tǒng)能效的影響。結(jié)果顯示,采用高溫發(fā)酵技術(shù),粗沼氣及生物甲烷轉(zhuǎn)化率比中溫發(fā)酵分別提高120%及110%,能量的轉(zhuǎn)化效率提高1倍;高溫發(fā)酵比中溫發(fā)酵減少了約3.1 wt%沼液及沼渣的處理量及26%的能量損失;對中溫及高溫發(fā)酵情景下系統(tǒng)的能效分析與比較,結(jié)果表明,采用高溫發(fā)酵及加壓水洗技術(shù),系統(tǒng)所需的熱量由外部熱源供給且沼液與發(fā)酵原料換熱回收低溫余熱,系統(tǒng)的能效在32種情景中最高(46.5%);采用中溫發(fā)酵及變壓吸附技術(shù),系統(tǒng)所需的熱量由燃燒發(fā)酵過程自產(chǎn)沼氣供給且沼液與發(fā)酵原料不進(jìn)行換熱回收低溫余熱,系統(tǒng)的能量效率在32種情景中最低(15.8%);在系統(tǒng)的熱量供給方式及沼液與發(fā)酵原料換熱模式相同的情況下,高溫條件下系統(tǒng)的能效約為中溫條件下的2倍。在對系統(tǒng)能效影響的三個因素中,發(fā)酵溫度是對系統(tǒng)能效影響最大的因素,其次是系統(tǒng)熱量的供給方式,最后是沼液與發(fā)酵原料的換熱模式。(4)針對三種不同沼氣利用方式(提純制備生物甲烷、熱電聯(lián)產(chǎn)、固體燃料電池)構(gòu)成的生物沼氣生產(chǎn)及利用系統(tǒng),對其進(jìn)行了概念設(shè)計,并分別對其能效、綠色度及凈現(xiàn)值等指標(biāo)進(jìn)行了綜合評價與比較。結(jié)果表明,對于系統(tǒng)的能量效率,為沼氣提純沼氣SOFCs沼氣CHP,提純利用方式系統(tǒng)能效最高,SOFCs利用方式系統(tǒng)的能效比CHP利用方式系統(tǒng)的能效高2.5%:對于系統(tǒng)綠色度變化量,沼氣SOFCs沼氣CHP沼氣提純;對于系統(tǒng)的投資回收期,沼氣CHP沼氣SOFCs沼氣提純。
[Abstract]:Biomass wastes by anaerobic fermentation to produce biogas is one of the important means of efficient biomass resource utilization, it is benefit to both economy and environment, is a hot research topic in the field of renewable energy. The key technology of the existing research focuses on anaerobic fermentation and biogas biomass utilization, the lack of research from the angle of the system, and this system involves many technologies, multi unit processes and a variety of impact assessment index, is a complex network topology system assessment. Therefore, the need for in-depth analysis of the complex system by using the method of system engineering, understand the influence mechanism of each unit and variables on the performance of the system, and for a variety of techniques affect the efficiency of system using a variety of the comprehensive evaluation index, screening out the large-scale application of representative sustainable development route for biogas technology Provide guidance. Based on the above background, this paper analyzed the energy of biogas system, comprehensive evaluation of environment and economy, and the system of biogas anaerobic fermentation and purification of key unit is analyzed modeling and energy consumption. The main contents and results are as follows: (1) the crude biogas purification unit, carry out the PSA method (PSA) dynamic simulation and evaluation of biological methane preparation technology for purification of crude biogas. Respectively with 13X zeolite (Zeolite 13X), 3K carbon molecular sieve (CMS-3K) and 508b metal organic frameworks (MOF-508b) as adsorbent, establishes an improved Skarstrom dynamic pressure swing adsorption tower two - six step process simulation and the key parameters such as the desorption pressure of the pressure swing adsorption process, the feed ratio of purge and conducted a sensitivity analysis to determine the optimal process parameters; effects of adsorption tower pressure, concentration of CH4 and CO2 components with height and follow The change ring time: consumption of the process of three kinds of adsorbent loading conditions, equipment size and adsorbent loading are calculated and compared. The results show that using MOF-508b and CMS-3K as the adsorbent process energy consumption than the Zeolite 13X as adsorbent respectively 56% and 50%; adsorption and MOF-508b adsorption tower tower CMS-3K filled 13X filling Zeolite diameter ratio diameter respectively, 13% and 27%. (2) for the biomass anaerobic fermentation unit, established the heat balance model of volumetric gas production rate and unit. The temperature of 35 C and 55 C high temperature anaerobic fermentation condition, based on the experimental data of three kinds of a total of two yuan (cow dung fermentation system with straw, chicken manure and straw, manure and straw) volume gas production rate model, the predicted results with experimental results the average deviation is less than 7%. The model of thermal equilibrium, investigated the recovery of low temperature waste heat to reduce the slurry process for The effects of heat. The results showed that the fermentation process about 89% calories for heating cold material imports, and about 11% for the constant temperature fermentation tank. Therefore, low temperature waste heat of the biogas slurry recycled to reduce heat supply is necessary. The biogas boiler heating fermentation tank as an example, the biogas slurry waste heat the recovery in the middle temperature and high temperature fermentation, fermentation condition, every day can be reduced respectively by 42% and 49% of the biogas consumption. (3) for bio methane production system, carried out the research of logistics and energy analysis. Based on the simulation of unit process, established the evaluation index model of energy consumption and energy efficiency of the system. Considering 2 4 kinds of crude fermentation technology, biogas purification technology, 2 kinds of heat supply system and whether the biogas low-temperature waste heat utilization factors, 32 scenarios were designed route: the influences of fermentation temperature, heat supply method and system Effect of biogas slurry waste heat recovery mode on the energy efficiency of the system. The results showed that the high temperature fermentation technology, crude biogas and bio methane conversion rate is increased by 120% and 110% respectively than mesophilic fermentation, energy conversion efficiency is increased by 1 times; high temperature fermentation capacity and energy loss of 26% is about 3.1 wt% and the biogas liquid residue less than the temperature of fermentation; medium temperature and high temperature fermentation conditions of system energy efficiency analysis and comparison, the results show that the high temperature fermentation and pressurized washing technology, the required system heat from the external heat source and heat recovery of low temperature waste heat and biogas fermentation materials, the energy efficiency is highest in the 32 scenario (46.5%); the high temperature fermentation and pressure swing adsorption technology, the required system heat by burning biogas and biogas fermentation production supply and fermentation raw material without heat recovery of low temperature waste heat, the energy efficiency of the system in the 32 scene in the Low (15.8%); in the heat supply system and heat transfer model of biogas slurry and fermentation of raw materials under the same temperature conditions the system efficiency is about 2 times of temperature. In the three factors of system efficiency, the fermentation temperature is the biggest factor affecting the energy efficiency of the system, followed by the the heat supply system, finally hot mode for biogas slurry and fermentation material. (4) according to the three different ways of biogas utilization (purification preparation of bio methane, cogeneration, solid fuel cell) biogas production and utilization system, the concept of design, and the energy efficiency, green and the net present value of the evaluation and comparison. The results show that the energy efficiency of the system, as SOFCs CHP biogas biogas biogas purification, purification by way of system efficiency is highest, SOFCs uses the energy efficiency ratio of the system by CHP The energy efficiency of the system is 2.5%: for the change of system green degree, biogas SOFCs biogas CHP biogas purification, for the system's investment recovery period, biogas CHP methane and SOFCs biogas purification.
【學(xué)位授予單位】:中國科學(xué)院研究生院(過程工程研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S216.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡啟春;湯曉玉;寧睿婷;李謙;;與生豬產(chǎn)業(yè)發(fā)展聯(lián)動的中國沼氣工程建設(shè)現(xiàn)狀分析[J];農(nóng)業(yè)工程學(xué)報;2015年08期
2 寇巍;張歡;孫玉輝;劉齊;張大雷;劉慶玉;;寒冷地區(qū)沼氣工程增溫保溫能量效益分析[J];太陽能學(xué)報;2015年03期
3 浦紹瑞;錢紅亮;馬春燕;劉暢;陸小華;;畜禽糞便高溫發(fā)酵與秸稈熱化學(xué)處理工藝的耦合[J];化工學(xué)報;2015年06期
4 許亞晶;黃鶯;武斌;張香平;張鎖江;;生物氣脫碳提質(zhì)過程的能耗分析和環(huán)境評價(英文)[J];Chinese Journal of Chemical Engineering;2015年01期
5 李穎;孫永明;李東;袁振宏;孔曉英;許潔;董仁杰;;中外沼氣產(chǎn)業(yè)政策淺析[J];新能源進(jìn)展;2014年06期
6 武斌;張香平;許亞晶;黃鶯;;生物甲烷系統(tǒng)技術(shù)評價與集成的研究進(jìn)展[J];化工進(jìn)展;2014年07期
7 鄭楊清;郁強(qiáng)強(qiáng);王海濤;王遠(yuǎn)鵬;何寧;沈亮;李清彪;;沼渣制備生物炭吸附沼液中氨氮[J];化工學(xué)報;2014年05期
8 花鏡;滕子言;陸小華;楊祝紅;王昌松;;沼液余熱回收對高溫發(fā)酵沼氣工程凈產(chǎn)氣率的影響[J];化工學(xué)報;2014年05期
9 劉暢;王俊;浦紹瑞;陸小華;;中德萬頭豬場沼氣工程經(jīng)濟(jì)性對比分析[J];化工學(xué)報;2014年05期
10 邢慧娟;秦朝葵;張楊竣;田春燕;;大中型沼氣工程熱工行為分析[J];熱科學(xué)與技術(shù);2013年03期
相關(guān)博士學(xué)位論文 前1條
1 王麗麗;沼氣產(chǎn)業(yè)化基本理論與大中型沼氣工程資源配置優(yōu)化研究[D];吉林大學(xué);2012年
相關(guān)碩士學(xué)位論文 前1條
1 胡尊燕;基于能值分析的化工過程可持續(xù)性評價及其計算方法研究[D];天津大學(xué);2009年
,本文編號:1466611
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1466611.html