基于關聯(lián)分析廣義回歸神經網絡模型在藝術陶瓷定價中的應用
發(fā)布時間:2019-01-15 20:39
【摘要】:通過提取對陶瓷企業(yè)定價的影響因素,采用了灰色關聯(lián)度分析法,構造了陶瓷企業(yè)定價的評價模型,得到了各個因素之間的灰色關聯(lián)度,從而確定各因素對陶瓷企業(yè)定價影響的關鍵因素,結合廣義回歸神經網絡模型,采用組合輸入向量建立陶瓷定價的組合廣義回歸神經網絡預測模型.實例表明:模型比其它模型的預測值更加精確,并且算法能應用到其它數據處理中,具有較廣泛的適應性.
[Abstract]:By extracting the influencing factors on the pricing of ceramic enterprises and adopting the grey relational degree analysis method, the evaluation model of the pricing of ceramic enterprises is constructed, and the grey correlation degree among the various factors is obtained. Therefore, the key factors affecting the pricing of ceramic enterprises are determined. Combined with the generalized regression neural network model, the combined input vector is used to establish the combined generalized regression neural network prediction model for ceramic pricing. Examples show that the model is more accurate than other models, and the algorithm can be applied to other data processing, and has a wide range of adaptability.
【作者單位】: 景德鎮(zhèn)陶瓷學院信息工程學院;
【基金】:國家自然科學基金(61262038,61202313) 2013教育部人文社科基金(13YJA760064) 江西省自然科學基金(20122BAB201016,20122BAB211033) 2013景德鎮(zhèn)市科研項目
【分類號】:F224;J527-F
[Abstract]:By extracting the influencing factors on the pricing of ceramic enterprises and adopting the grey relational degree analysis method, the evaluation model of the pricing of ceramic enterprises is constructed, and the grey correlation degree among the various factors is obtained. Therefore, the key factors affecting the pricing of ceramic enterprises are determined. Combined with the generalized regression neural network model, the combined input vector is used to establish the combined generalized regression neural network prediction model for ceramic pricing. Examples show that the model is more accurate than other models, and the algorithm can be applied to other data processing, and has a wide range of adaptability.
【作者單位】: 景德鎮(zhèn)陶瓷學院信息工程學院;
【基金】:國家自然科學基金(61262038,61202313) 2013教育部人文社科基金(13YJA760064) 江西省自然科學基金(20122BAB201016,20122BAB211033) 2013景德鎮(zhèn)市科研項目
【分類號】:F224;J527-F
【參考文獻】
相關期刊論文 前7條
1 計明軍;靳志宏;;基于可控提前期的庫存優(yōu)化模型[J];大連海事大學學報;2011年01期
2 孫曉東;焦s,
本文編號:2409083
本文鏈接:http://sikaile.net/guanlilunwen/lvyoujiudianguanlilunwen/2409083.html
教材專著