低壓電纜光交聯(lián)輻照箱熱流場實驗研究與數(shù)值模擬
本文選題:數(shù)值模擬 切入點:流速實驗 出處:《哈爾濱理工大學》2013年碩士論文 論文類型:學位論文
【摘要】:電線電纜在經(jīng)濟建設(shè)和日常生活中扮演著重要角色,交聯(lián)聚乙烯電纜已成為我國電力電纜中需求最大的品種。聚乙烯絕緣交聯(lián)改性后,綜合性能顯著提高,廣泛應(yīng)用于電力電纜、控制電纜、計算機電纜等領(lǐng)域。紫外光交聯(lián)技術(shù)由我國獨立研發(fā),擁有自主知識產(chǎn)權(quán),是近年來開始應(yīng)用于聚烯烴交聯(lián)的方法,設(shè)備投資少、維護簡便、節(jié)能高效,具有廣闊的應(yīng)用前景。輻照箱是光交聯(lián)生產(chǎn)線中的核心設(shè)備,是完成光交聯(lián)反應(yīng)的場所,輻照箱內(nèi)部的溫度控制,是保證光交聯(lián)反應(yīng)順利高效進行的關(guān)鍵。在輻照箱內(nèi)部,利用空氣強制對流換熱帶走高溫壁面的熱量,不僅需要降低部件溫度,還必須保證冷卻均勻,某些部件既不能過熱也不能過冷,輻照箱通風方案的設(shè)計必須同時滿足不同部分的溫控要求。 首先,進行輻照箱通風管道風速測量實驗,利用熱線風速儀測量空氣流速,并記通風機的電動機轉(zhuǎn)動頻率,獲得兩種輻照箱通風結(jié)構(gòu)在不同工況條件下的通風管道風速值。管道平均流速數(shù)據(jù)可為輻照箱流場數(shù)值模擬提供邊界條件。 其次,,建立低壓電纜紫外交聯(lián)輻照箱三種通風方案物理模型,利用FLUENT軟件模擬冷卻空氣速度和壓力分布,分析結(jié)構(gòu)變化對設(shè)備流場的影響,特別關(guān)注絕緣層、紫外汞燈、反光罩的對流冷卻效果。獲得實驗條件下難以測量的流場物理量,通過不同通風方案的流場數(shù)據(jù)對比,為輻照箱通風方案優(yōu)化設(shè)計提供參考。 最后,利用FLUENT DO模型對低壓電纜和高壓電纜二維截面溫度場進行非穩(wěn)態(tài)數(shù)值模擬,對模型準確性進行了驗證,分析電纜截面溫度分布以及絕緣、內(nèi)屏蔽、導體線芯的溫度變化趨勢。在低壓電纜內(nèi),對流換熱和輻射換熱引起的絕緣層溫度變化并不顯著,而絕緣與導體之間的熱傳導對絕緣層內(nèi)的溫度分布起了主要作用。在高壓電纜內(nèi),熱輻射、對流換熱和熱傳導共同影響了電纜橫截面的溫度分布。
[Abstract]:Wires and cables play an important role in economic construction and daily life. XLPE cables have become the most demanding variety of power cables in China. It is widely used in power cable, control cable, computer cable, etc. Ultraviolet light crosslinking technology has been developed independently in our country and has its own intellectual property rights. It is a method that has been applied to polyolefin crosslinking in recent years, with less investment in equipment and simple maintenance. The irradiation box is the core equipment in the photocrosslinking production line, the place where the photocrosslinking reaction is completed, and the temperature control inside the irradiation box. It is the key to ensure the smooth and efficient photocrosslinking reaction. In the radiation box, the air forced convection heat transfer to take away the heat from the high temperature wall, not only need to reduce the temperature of the components, but also must ensure that the cooling is uniform. Some parts can not be overheated or undercooled. The design of the ventilation scheme of the irradiation box must meet the temperature control requirements of different parts at the same time. First of all, the experiment of measuring the wind speed of the ventilation duct of the irradiation box is carried out, the air velocity is measured by the hot-wire anemometer, and the rotating frequency of the motor of the ventilator is recorded. The wind velocity values of two kinds of radiation box ventilation structures under different working conditions are obtained. The average velocity data of the duct can provide boundary conditions for the numerical simulation of the flow field of the radiation box. Secondly, the physical models of three ventilation schemes for ultraviolet crosslinked irradiation box of low-voltage cable are established. The distribution of cooling air velocity and pressure is simulated by FLUENT software, and the influence of structural changes on the flow field of the equipment is analyzed, especially the insulation layer and ultraviolet mercury lamp. The convection cooling effect of the reflector is obtained. The flow field physical quantities which are difficult to measure under the experimental conditions are obtained. The comparison of the flow field data of different ventilation schemes provides a reference for the optimization design of the radiation box ventilation scheme. Finally, FLUENT do model is used to simulate the two-dimensional cross-section temperature field of low-voltage cable and high-voltage cable. The accuracy of the model is verified. The temperature distribution of cable cross-section, insulation and internal shielding are analyzed. The temperature change trend of conductor core. In low-voltage cable, the temperature change of insulation layer caused by convection heat transfer and radiation heat transfer is not significant. The heat conduction between the insulation and conductor plays a major role in the temperature distribution in the insulation layer. In the high-voltage cable, heat radiation, convection heat transfer and heat conduction affect the temperature distribution of the cross-section of the cable.
【學位授予單位】:哈爾濱理工大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TM246
【參考文獻】
相關(guān)期刊論文 前10條
1 南防修;紫外光交聯(lián)電纜工藝裝備及其對產(chǎn)品性能的影響[J];電線電纜;2003年02期
2 甘興忠;;電線電纜絕緣交聯(lián)聚乙烯交聯(lián)工藝的分析和對比[J];電線電纜;2008年02期
3 鮑文波;馬樹軍;賈振山;李巍;;10kV紫外光輻照交聯(lián)聚乙烯電力電纜新技術(shù)[J];電線電纜;2008年04期
4 鮑文波;馬樹軍;賈振山;李巍;;紫外光輻照交聯(lián)聚乙烯在電纜行業(yè)中的應(yīng)用及進展[J];電線電纜;2009年04期
5 黃旭方;肖荔人;劉欣萍;錢慶榮;陳慶華;;幾種光敏劑對聚乙烯光敏化效果的對比研究[J];福建師范大學學報(自然科學版);2011年02期
6 鞠生宏;徐向華;梁新剛;;利用輻射計測量半透薄膜的光學特性[J];工程熱物理學報;2010年10期
7 瞿保鈞,吳強華;聚乙烯光引發(fā)交聯(lián)及其工業(yè)應(yīng)用研究的新進展[J];高等學;瘜W學報;2000年08期
8 吳強,瞿保鈞,吳強華;聚乙烯光引發(fā)交聯(lián)過程中的表面光氧化和光穩(wěn)定[J];高等學校化學學報;2001年09期
9 馬寶紅;劉紅;姜國發(fā);王巖;鮑文波;高廣剛;;耐溫125℃紫外光交聯(lián)低煙無鹵阻燃絕緣材料的研制[J];電線電纜;2012年04期
10 劉長安,孫德智,趙海發(fā),母旋;多相光催化反應(yīng)器中紫外光輻射能分布的研究[J];環(huán)境科學學報;2004年01期
相關(guān)碩士學位論文 前1條
1 趙文娟;固體推進劑飛行器尾焰紫外輻射特性理論計算[D];西安電子科技大學;2006年
本文編號:1559829
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/1559829.html